📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理
  • 更多信息

Was this helpful?

  1. 第9章 语言混合项目

9.5 使用pybind11构建C++和Python项目

Previous9.4 使用Boost.Python构建C++和Python项目Next9.6 使用Python CFFI混合C,C++,Fortran和Python

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,其中有一个C++示例。该示例在CMake 3.11版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。

前面的示例中,我们使用Boost.Python与C(C++)接口。本示例中,我们将尝试使用pybind11将Python与C++接口。其实现利用了C++11的特性,因此需要支持C++11的编译器。我们将演示在配置时如何获取pybind11依赖和构建我们的项目,包括一个使用FetchContent方法的Python接口,我们在第4章第3节和第8章第4节中有过讨论。在第11章第2节时,会通过PyPI发布一个用CMake/pybind11构建的C++/Python项目。届时将重新讨论这个例子,并展示如何打包它,使它可以用pip安装。

准备工作

我们将保持account.cpp不变,只修改account.cpp:

#pragma once
#include <pybind11/pybind11.h>
class Account
{
public:
  Account();
  ~Account();
  void deposit(const double amount);
  void withdraw(const double amount);
  double get_balance() const;

private:
  double balance;
};
namespace py = pybind11;
PYBIND11_MODULE(account, m)
{
  py::class_<Account>(m, "Account")
      .def(py::init())
      .def("deposit", &Account::deposit)
      .def("withdraw", &Account::withdraw)
      .def("get_balance", &Account::get_balance);
}

为了在下一个示例中更好地重用代码,我们还将把所有源代码放到子目录中,并使用下面的项目布局:

.
├── account
│    ├── account.cpp
│    ├── account.hpp
│    ├── CMakeLists.txt
│    └── test.py
└── CMakeLists.txt

具体实施

让我们详细分析一下这个项目中,各个CMakeLists.txt文件的内容:

  1. 主CMakeLists.txt文件:

    # define minimum cmake version
    cmake_minimum_required(VERSION 3.11 FATAL_ERROR)
    
    # project name and supported language
    project(recipe-05 LANGUAGES CXX)
    
    # require C++11
    set(CMAKE_CXX_STANDARD 11)
    set(CMAKE_CXX_EXTENSIONS OFF)
    set(CMAKE_CXX_STANDARD_REQUIRED ON)
  2. 这个文件中,查询了用于测试的Python解释器:

    find_package(PythonInterp REQUIRED)
  3. 然后,包含account子目录:

    add_subdirectory(account)
  4. 定义单元测试:

    # turn on testing
    enable_testing()
    
    # define test
    add_test(
      NAME
        python_test
      COMMAND
        ${CMAKE_COMMAND} -E env ACCOUNT_MODULE_PATH=$<TARGET_FILE_DIR:account>
        ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/account/test.py
      )
  5. account/CMakeLists.txt中,在配置时获取pybind11的源码:

    include(FetchContent)
    
    FetchContent_Declare(
      pybind11_sources
      GIT_REPOSITORY https://github.com/pybind/pybind11.git
      GIT_TAG v2.2
      )
    
    FetchContent_GetProperties(pybind11_sources)
    
    if(NOT pybind11_sources_POPULATED)
      FetchContent_Populate(pybind11_sources)
    
      add_subdirectory(
        ${pybind11_sources_SOURCE_DIR}
        ${pybind11_sources_BINARY_DIR}
        )
    endif()
  6. 最后,定义Python模块。再次使用模块选项add_library。并将库目标的前缀和后缀属性设置为PYTHON_MODULE_PREFIX和PYTHON_MODULE_EXTENSION,这两个值由pybind11适当地推断出来:

    add_library(account
      MODULE
        account.cpp
      )
    
    target_link_libraries(account
      PUBLIC
        pybind11::module
      )
    
    set_target_properties(account
      PROPERTIES
        PREFIX "${PYTHON_MODULE_PREFIX}"
        SUFFIX "${PYTHON_MODULE_EXTENSION}"
      )
  7. 进行测试:

    $ mkdir -p build
    $ cd build
    $ cmake ..
    $ cmake --build .
    $ ctest
    
    Start 1: python_test
    1/1 Test #1: python_test ...................... Passed 0.04 sec
    100% tests passed, 0 tests failed out of 1
    Total Test time (real) = 0.04 sec

工作原理

pybind11的功能和使用与Boost.Python非常类似。pybind11是一个更轻量级的依赖——不过需要编译器支持C++11。account.hpp中的接口定义与之前的示例非常类似:

#include <pybind11/pybind11.h>
// ...
namespace py = pybind11;
PYBIND11_MODULE(account, m)
{
  py::class_<Account>(m, "Account")
      .def(py::init())
      .def("deposit", &Account::deposit)
      .def("withdraw", &Account::withdraw)
      .def("get_balance", &Account::get_balance);
}

同样,我们可以了解到Python方法是如何映射到C++函数的。解释PYBIND11_MODULE库是在导入的目标pybind11::module中定义,使用以下代码包括了这个模块:

add_subdirectory(
  ${pybind11_sources_SOURCE_DIR}
  ${pybind11_sources_BINARY_DIR}
  )

与之前的示例有两个不同之处:

  • 不需要在系统上安装pybind11

  • ${pybind11_sources_SOURCE_DIR}子目录,包含pybind11的CMakelist.txt中,在我们开始构建项目时,这个目录并不存在

这个挑战的解决方案是用FetchContent,在配置时获取pybind11源代码和CMake模块,以便可以使用add_subdirectory引用。使用FetchContent模式,可以假设pybind11在构建树中可用,并允许构建和链接Python模块:

add_library(account
  MODULE
      account.cpp
  )

target_link_libraries(account
  PUBLIC
      pybind11::module
  )

使用下面的命令,确保Python模块库得到一个定义良好的前缀和后缀,并与Python环境兼容:

set_target_properties(account
  PROPERTIES
    PREFIX ${PYTHON_MODULE_PREFIX}
    SUFFIX ${PYTHON_MODULE_EXTENSION}
  )

主CMakeLists.txt文件的其余部分,都在执行测试(与前一个示例使用相同的test.py)。

更多信息

在示例中,我们使用FetchContent解决了这个问题,它提供了一种非常紧凑的方法来引用CMake子项目,而不是显式地跟踪它的源代码。同样,我们也可以使用超级构建的方法来解决这个问题(参见第8章)。

按照pybind11文档的方式,通过CMake构建( )。并使用add_subdirectory将pybind11导入项目。但是,不会将pybind11源代码显式地放到项目目录中,而是演示如何在配置时使用FetchContent ( )。

我们可以将pybind11源代码包含在项目源代码存储库中,这将简化CMake结构,并消除在编译时对pybind11源代码进行网络访问的要求。或者,我们可以将pybind11源路径定义为一个Git子模块( ),以应对pybind11源依赖项的更新。

要查看如何简单函数、定义文档注释、映射内存缓冲区等进阶阅读,请参考pybind11文档:

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-9/recipe-05
https://pybind11.readthedocs.io/en/stable/compile
https://cmake.org/cmake/help/v3.11/module/FetchContent.html
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://pybind11.readthedocs.io