📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 复制要移植的示例
  • 创建一个主CMakeLists.txt
  • 如何让常规和CMake配置共存
  • 获取传统构建的记录
  • 调试迁移项目
  • 实现选项
  • 从可执行的目标开始,进行本地化

Was this helpful?

  1. 第15章 使用CMake构建已有项目

15.1 如何开始迁移项目

Previous第15章 使用CMake构建已有项目Next15.2 生成文件并编写平台检查

Last updated 5 years ago

Was this helpful?

我们将首先说明,在哪里可以找到我们的示例,然后对移植,进行逐步的讨论。

复制要移植的示例

我们将从Vim源代码库的v8.1.0290发行标记开始() ,我们的工作基于Git提交哈希值b476cb7进行。 通过克隆Vim的源代码库并检出特定版本的代码,可以复制以下步骤:

$ git clone --single-branch -b v8.1.0290 https://github.com/vim/vim.git

或者,我们的解决方案可以在cmake-support分支上找到,网址是 ,并使用以下方法克隆下来:

$ git clone --single-branch -b cmake-support https://github.com/dev-cafe/vim

在本例中,我们将使用CMake模拟./configure --enable-gui=no的配置方式。

为了与后面的解决方案进行比较,建议读者也可以研究以下Neovim项目( ),这是传统Vi编辑器的一个分支,提供了一个CMake构建系统。

创建一个主CMakeLists.txt

首先,我们在源代码存储库的根目录中创建主CMakeLists.txt,在这里我们设置了最低CMake版本、项目名称和支持的语言,在本例中是C:

cmake_minimum_required(VERSION
3.5 FATAL_ERROR)
project(vim LANGUAGES C)

添加任何目标或源之前,可以设置默认的构建类型。本例中,我们默认为Release配置,这将打开某些编译器优化选项:

if(NOT CMAKE_BUILD_TYPE)
    set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
endif()

我们也使用可移植的安装目录变量:

include(GNUInstallDirs)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY
    ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY
    ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY
    ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_BINDIR})

作为一个完整性检查,我们可以尝试配置和构建项目,但到目前为止还没有目标,所以构建步骤的输出是空的:

$ mkdir -p build
$ cd build
$ cmake ..
$ cmake --build .

我们一会儿就要开始添加目标了。

如何让常规和CMake配置共存

CMake的一个特性是在源代码之外构建,构建目录可以是任何目录,而不必是项目目录的子目录。这意味着,我们可以将一个项目移植到CMake,而不影响以前/现在的配置和构建机制。对于一个重要项目的迁移,CMake文件可以与其他构建框架共存,从而允许一个渐进的迁移,包括选项、特性和可移植性,并允许开发社区人员适应新的框架。为了允许传统配置和CMake配置共存一段时间,一个典型的策略是收集CMakeLists.txt文件中的所有CMake代码,以及CMake子目录下的所有辅助CMake源文件的示例中,我们不会引入CMake子目录,而是保持辅助文件要求他们接近目标和来源,但会顾及使用的传统Autotools构建修改的所有文件,但有一个例外:我们将一些修改自动生成文件构建目录下,而不是在源代码树中。

$ ./configure --enable-gui=no

... lot of output ...

$ make > build.log

我们的示例中(这里没有显示build.log的内容),我们能够验证编译了哪些源文件以及使用了哪些编译标志(-I. -Iproto -DHAVE_CONFIG_H -g -O2 -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=1)。日志文件中,我们可以做如下推断:

  • 所有对象文件都链接到二进制文件中

  • 不生成库

  • 可执行目标与下列库进行连接:-lSM -lICE -lXpm -lXt -lX11 -lXdmcp -lSM -lICE -lm -ltinfo -lelf -lnsl -lacl -lattr -lgpm -ldl

通过在使用message对工程进行调试时,选择添加选项、目标、源和依赖项,我们将逐步实现一个可工作的构建。

获取传统构建的记录

向配置添加任何目标之前,通常有必要看看传统构建的行为,并将配置和构建步骤的输出保存到日志文件中。对于我们的Vim示例,可以使用以下方法实现:

$ ./configure --enable-gui=no

... lot of output ...

$ make > build.log

示例中(这里没有显示build.log的完整内容),我们能够验证编译了哪些源文件以及使用了哪些编译标志(-I.-Iproto -DHAVE_CONFIG_H -g -O2 -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=1)。从日志文件中,推断如下:

  • 所有对象文件都链接到一个二进制文件中

  • 没有生成库

  • 可执行目标链接到以下库:-lSM -lXpm -lXt -lX11 -lXdmcp -lSM -lSM - linfo -lelf -lnsl -lacl -lattr -lgpm -ldl

调试迁移项目

当目标和命令逐渐移动到CMake端时,使用message命令打印变量的值就非常有用了:

message(STATUS "for debugging printing the value of ${some_variable}")

在使用消息进行调试时,添加选项、目标、源和依赖项,我们将逐步实现一个可工作的构建。

实现选项

找出传统配置为用户提供的选项(例如,通过./configure --help)。Vim项目提供了一个非常长的选项和标志列表,为了使本章的讨论保持简单,我们只在CMake端实现四个选项:

--disable-netbeans Disable NetBeans integration support.
--disable-channel Disable process communication support.
--enable-terminal Enable terminal emulation support.
--with-features=TYPE tiny, small, normal, big or huge (default: huge)

我们还将忽略任何GUI支持和模拟--enable-gui=no,因为它将使示例复杂化。

我们将在CMakeLists.txt中添加以下选项(有默认值):

option(ENABLE_NETBEANS "Enable netbeans" ON)
option(ENABLE_CHANNEL "Enable channel" ON)
option(ENABLE_TERMINAL "Enable terminal" ON)

我们可以用cmake -D FEATURES=value定义的变量FEATURES来模拟--with-features标志。如果不进行设置,它默认值为"huge":

if(NOT FEATURES)
    set(FEATURES "huge" CACHE STRING
"FEATURES chosen by the user at CMake configure time")
endif()

我们为使用者提供了一个值FEATURES:

list(APPEND _available_features "tiny" "small" "normal" "big" "huge")
if(NOT FEATURES IN_LIST _available_features)
    message(FATAL_ERROR "Unknown features: \"${FEATURES}\". Allowed values are: ${_available_features}.")
endif()
set_property(CACHE FEATURES PROPERTY STRINGS ${_available_features})

选项可以放在主CMakeLists.txt中,也可以在查询ENABLE_NETBEANS、ENABLE_CHANNEL、ENABLE_TERMINAL和FEATURES的定义附近。前一种策略的优点是,选项列在一个地方,不需要遍历CMakeLists.txt文件来查找选项的定义。因为我们还没有定义任何目标,所以可以先将选项保存在一个文件中,但是稍后会将选项移到离目标更近的地方,通过本地化作用域,得到可重用的CMake构建块。

从可执行的目标开始,进行本地化

让我们添加一些源码。在Vim示例中,源文件位于src下,为了保持主CMakeLists.txt的可读性和可维持性,我们将创建一个新文件src/CMakeLists.txt,并将其添加到主CMakeLists.txt中,从而可以在自己的目录范围内处理该文件:

add_subdirectory(src)

在src/CMakeLists.txt中,可以定义可执行目标,并列出从build.log中获取所有源码:

add_executable(vim
  arabic.c beval.c buffer.c blowfish.c crypt.c crypt_zip.c dict.c diff.c digraph.c edit.c eval.c evalfunc.c ex_cmds.c ex_cmds2.c ex_docmd.c ex_eval.c ex_getln.c farsi.c fileio.c fold.c getchar.c hardcopy.c hashtab.c if_cscope.c if_xcmdsrv.c list.c mark.c memline.c menu.c misc1.c misc2.c move.c mbyte.c normal.c ops.c option.c os_unix.c auto/pathdef.c popupmnu.c pty.c quickfix.c regexp.c screen.c search.c sha256.c spell.c spellfile.c syntax.c tag.c term.c terminal.c ui.c undo.c userfunc.c window.c libvterm/src/encoding.c libvterm/src/keyboard.c libvterm/src/mouse.c libvterm/src/parser.c libvterm/src/pen.c libvterm/src/screen.c libvterm/src/state.c libvterm/src/unicode.c libvterm/src/vterm.c netbeans.c channel.c charset.c json.c main.c memfile.c message.c version.c
  )

这是一个开始。这种情况下,代码甚至不会配置,因为源列表包含生成的文件。讨论生成文件和链接依赖项之前,我们把这一长列表拆分一下,以限制目标依赖项的范围,并使项目更易于管理。如果我们将它们分组到目标,这将使CMake更容易地找到源文件依赖项,并避免很长的链接行。

对于Vim示例,我们可以进一步了解来自src/Makefile和src/configure.ac的源码文件进行分组。这些文件中,大多数源文件都是必需的。有些源文件是可选的(netbeans.c应该只在ENABLE_NETBEANS打开时构建,而channel.c应该只在ENABLE_CHANNEL打开时构建)。此外,我们可以将所有源代码分组到src/libvterm/下,并使用ENABLE_TERMINAL可选地编译它们。

这样,我们将CMake结构重组,构成如下的树结构:

.
├── CMakeLists.txt
└── src
    ├── CMakeLists.txt
    └── libvterm
        └── CMakeLists.txt

顶层文件使用add_subdirectory(src)添加src/CMakeLists.txt。src/CMakeLists.txt文件包含三个目标(一个可执行文件和两个库),每个目标都带有编译定义和包含目录。首先定义可执行文件:

add_executable(vim
  main.c
  )

target_compile_definitions(vim
  PRIVATE
      "HAVE_CONFIG_H"
  )

然后,定义一些需要源码文件的目标:

add_library(basic_sources "")

target_sources(basic_sources
  PRIVATE
    arabic.c beval.c blowfish.c buffer.c charset.c
    crypt.c crypt_zip.c dict.c diff.c digraph.c
    edit.c eval.c evalfunc.c ex_cmds.c ex_cmds2.c
    ex_docmd.c ex_eval.c ex_getln.c farsi.c fileio.c
    fold.c getchar.c hardcopy.c hashtab.c if_cscope.c
    if_xcmdsrv.c json.c list.c main.c mark.c
    memfile.c memline.c menu.c message.c misc1.c
    misc2.c move.c mbyte.c normal.c ops.c
    option.c os_unix.c auto/pathdef.c popupmnu.c pty.c
    quickfix.c regexp.c screen.c search.c sha256.c
    spell.c spellfile.c syntax.c tag.c term.c
    terminal.c ui.c undo.c userfunc.c version.c
    window.c
  )

target_include_directories(basic_sources
  PRIVATE
    ${CMAKE_CURRENT_LIST_DIR}/proto
    ${CMAKE_CURRENT_LIST_DIR}
    ${CMAKE_CURRENT_BINARY_DIR}
  )

target_compile_definitions(basic_sources
  PRIVATE
      "HAVE_CONFIG_H"
  )

target_link_libraries(vim
  PUBLIC
      basic_sources
  )

然后,定义一些可选源码文件的目标:

add_library(extra_sources "")

if(ENABLE_NETBEANS)
  target_sources(extra_sources
    PRIVATE
        netbeans.c
    )
endif()

if(ENABLE_CHANNEL)
  target_sources(extra_sources
    PRIVATE
        channel.c
    )
endif()

target_include_directories(extra_sources
  PUBLIC
    ${CMAKE_CURRENT_LIST_DIR}/proto
    ${CMAKE_CURRENT_BINARY_DIR}
  )

target_compile_definitions(extra_sources
  PRIVATE
      "HAVE_CONFIG_H"
  )

target_link_libraries(vim
  PUBLIC
      extra_sources
  )

使用以下代码,对连接src/libvterm/子目录进行选择:

if(ENABLE_TERMINAL)
  add_subdirectory(libvterm)

  target_link_libraries(vim
    PUBLIC
        libvterm
    )
endif()

对应的src/libvterm/CMakeLists.txt包含以下内容:

add_library(libvterm "")

target_sources(libvterm
  PRIVATE
    src/encoding.c
    src/keyboard.c
    src/mouse.c
    src/parser.c
    src/pen.c
    src/screen.c
    src/state.c
    src/unicode.c
    src/vterm.c
  )

target_include_directories(libvterm
  PUBLIC
      ${CMAKE_CURRENT_LIST_DIR}/include
  )

target_compile_definitions(libvterm
  PRIVATE
    "HAVE_CONFIG_H"
    "INLINE="
    "VSNPRINTF=vim_vsnprintf"
    "IS_COMBINING_FUNCTION=utf_iscomposing_uint"
    "WCWIDTH_FUNCTION=utf_uint2cells"
  )

我们已经从build.log中获取了编译信息。树结构的优点是,目标的定义靠近源的位置。如果我们决定重构代码并重命名或移动目录,描述目标的CMake文件就会随着源文件一起移动。

我们的示例代码还没有配置(除非在成功的Autotools构建之后尝试配置),现在来试试:

$ mkdir -p build
$ cd build
$ cmake ..

-- The C compiler identification is GNU 8.2.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Configuring done
CMake Error at src/CMakeLists.txt:12 (add_library):
Cannot find source file:
auto/pathdef.c
Tried extensions .c .C .c++ .cc .cpp .cxx .cu .m .M .mm .h .hh .h++ .hm
.hpp .hxx .in .txx

这里需要生成auto/pathdef.c(和其他文件),我们将在下一节中考虑这些文件。

最后一行set_property(CACHE FEATURES PROPERTY STRINGS ${_available_features}),当使用cmake-gui配置项目,则有有不错的效果,用户可根据选择字段清单,选择已经定义了的FEATURES(参见 )。

https://github.com/vim/vim
https://github.com/dev-cafe/vim
https://github.com/neovim/neovim
https://blog.kitware.com/constraining-values-with-comboboxes-in-cmake-cmake-gui/