📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理
  • 更多信息

Was this helpful?

  1. 第6章 生成源码

6.2 使用Python在配置时生成源码

Previous6.1 配置时生成源码Next6.3 构建时使用Python生成源码

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,其中包含一个Fortran/C例子。该示例在CMake 3.10版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows(使用MSYS Makefile)上进行过测试。

本示例中,我们将再次从模板print_info.c.in生成print_info.c。但这一次,将假设CMake函数configure_file()没有创建源文件,然后使用Python脚本模拟这个过程。当然,对于实际的项目,我们可能更倾向于使用configure_file(),但有时使用Python生成源代码的需要时,我们也应该知道如何应对。

这个示例有严重的限制,不能完全模拟configure_file()。我们在这里介绍的方法,不能生成一个自动依赖项,该依赖项将在构建时重新生成print_info.c。换句话说,如果在配置之后删除生成的print_info.c,则不会重新生成该文件,构建也会失败。要正确地模拟configure_file(),需要使用add_custom_command()和add_custom_target()。我们将在第3节中使用它们,来克服这个限制。

这个示例中,我们将使用一个简单的Python脚本。这个脚本将读取print_info.c.in。用从CMake传递给Python脚本的参数替换文件中的占位符。对于更复杂的模板,我们建议使用外部工具,比如Jinja(参见 )。

def configure_file(input_file, output_file, vars_dict):

  with input_file.open('r') as f:
      template = f.read()

  for var in vars_dict: 
      template = template.replace('@' + var + '@', vars_dict[var])

  with output_file.open('w') as f:
      f.write(template)

这个函数读取一个输入文件,遍历vars_dict变量中的目录,并用对应的值替换@key@,再将结果写入输出文件。这里的键值对,将由CMake提供。

准备工作

print_info.c.in和example.f90与之前的示例相同。此外,我们将使用Python脚本configurator.py,它提供了一个函数:

def configure_file(input_file, output_file, vars_dict):
  with input_file.open('r') as f:
      template = f.read()

  for var in vars_dict:
      template = template.replace('@' + var + '@', vars_dict[var])

  with output_file.open('w') as f:
      f.write(template)

该函数读取输入文件,遍历vars_dict字典的所有键,用对应的值替换模式@key@,并将结果写入输出文件(键值由CMake提供)。

具体实施

与前面的示例类似,我们需要配置一个模板文件,但这一次,使用Python脚本模拟configure_file()函数。我们保持CMakeLists.txt基本不变,并提供一组命令进行替换操作configure_file(print_info.c.in print_info.c @ONLY),接下来将逐步介绍这些命令:

  1. 首先,构造一个变量_config_script,它将包含一个Python脚本,稍后我们将执行这个脚本:

    set(_config_script
    "
    from pathlib import Path
    source_dir = Path('${CMAKE_CURRENT_SOURCE_DIR}')
    binary_dir = Path('${CMAKE_CURRENT_BINARY_DIR}')
    input_file = source_dir / 'print_info.c.in'
    output_file = binary_dir / 'print_info.c'
    
    import sys
    sys.path.insert(0, str(source_dir))
    
    from configurator import configure_file
    vars_dict = {
      '_user_name': '${_user_name}',
      '_host_name': '${_host_name}',
      '_fqdn': '${_fqdn}',
      '_processor_name': '${_processor_name}',
      '_processor_description': '${_processor_description}',
      '_os_name': '${_os_name}',
      '_os_release': '${_os_release}',
      '_os_version': '${_os_version}',
      '_os_platform': '${_os_platform}',
      '_configuration_time': '${_configuration_time}',
      'CMAKE_VERSION': '${CMAKE_VERSION}',
      'CMAKE_GENERATOR': '${CMAKE_GENERATOR}',
      'CMAKE_Fortran_COMPILER': '${CMAKE_Fortran_COMPILER}',
      'CMAKE_C_COMPILER': '${CMAKE_C_COMPILER}',
    }
    configure_file(input_file, output_file, vars_dict)
    ")
  2. 使用find_package让CMake使用Python解释器:

    find_package(PythonInterp QUIET REQUIRED)
  3. 如果找到Python解释器,则可以在CMake中执行_config_script,并生成print_info.c文件:

    execute_process(
      COMMAND
          ${PYTHON_EXECUTABLE} "-c" ${_config_script}
      )
  4. 之后,定义可执行目标和依赖项,这与前一个示例相同。所以,得到的输出没有变化。

工作原理

回顾一下对CMakeLists.txt的更改。

我们执行了一个Python脚本生成print_info.c。运行Python脚本前,首先检测Python解释器,并构造Python脚本。Python脚本导入configure_file函数,我们在configurator.py中定义了这个函数。为它提供用于读写的文件位置,并将其值作为键值对。

此示例展示了生成配置的另一种方法,将生成任务委托给外部脚本,可以将配置报告编译成可执行文件,甚至库目标。我们在前面的配置中认为的第一种方法更简洁,但是使用本示例中提供的方法,我们可以灵活地使用Python(或其他语言),实现任何在配置时间所需的步骤。使用当前方法,我们可以通过脚本的方式执行类似cmake_host_system_information()的操作。

但要记住,这种方法也有其局限性,它不能在构建时重新生成print_info.c的自动依赖项。下一个示例中,我们应对这个挑战。

更多信息

我们可以使用get_cmake_property(_vars VARIABLES)来获得所有变量的列表,而不是显式地构造vars_dict(这感觉有点重复),并且可以遍历_vars的所有元素来访问它们的值:

get_cmake_property(_vars VARIABLES)
foreach(_var IN ITEMS ${_vars})
  message("variable ${_var} has the value ${${_var}}") 
endforeach()

使用这种方法,可以隐式地构建vars_dict。但是,必须注意转义包含字符的值,例如:;, Python会将其解析为一条指令的末尾。

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-6/recipe-02
http://jinja.pocoo.org