📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理

Was this helpful?

  1. 第6章 生成源码

6.5 从文件中记录项目版本

Previous6.4 记录项目版本信息以便报告Next6.6 配置时记录Git Hash值

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,其中包含一个C++例子。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。

这个示例的目的和前一个相似,但是出发点不同。我们计划是从文件中读取版本信息,而不是将其设置在CMakeLists.txt中。将版本保存在单独文件中的动机,是允许其他构建框架或开发工具使用独立于CMake的信息,而无需将信息复制到多个文件中。与CMake并行使用的构建框架的一个例子是Sphinx文档框架,它生成文档并将其部署到阅读文档服务中,以便在线提供代码文档。

准备工作

我们将从一个名为VERSION的文件开始,其中包含以下内容:

2.0.1-rc-2

这一次,选择更安全的数据类型,并将PROGRAM_VERSION定义为version.hpp.in中的字符串常量:

#pragma once
#include <string>
const std::string PROGRAM_VERSION = "@PROGRAM_VERSION@";

下面的源码(example.cpp),将包含生成的version.hpp:

// provides PROGRAM_VERSION
#include "version.hpp"
#include <iostream>

int main() {
  std::cout << "This is output from code v" << PROGRAM_VERSION
  << std::endl;
  std::cout << "Hello CMake world!" << std::endl;
}

具体实施

逐步来完成我们的任务:

  1. CMakeLists.txt定义了最低版本、项目名称、语言和标准:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    project(recipe-05 LANGUAGES CXX)
    set(CMAKE_CXX_STANDARD 11)
    set(CMAKE_CXX_EXTENSIONS OFF)
    set(CMAKE_CXX_STANDARD_REQUIRED ON)
  2. 从文件中读取版本信息如下:

    if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/VERSION")
        file(READ "${CMAKE_CURRENT_SOURCE_DIR}/VERSION" PROGRAM_VERSION)
        string(STRIP "${PROGRAM_VERSION}" PROGRAM_VERSION)
    else()
        message(FATAL_ERROR "File ${CMAKE_CURRENT_SOURCE_DIR}/VERSION not found")
    endif()
  3. 配置头文件:

    configure_file(
      version.hpp.in
      generated/version.hpp
      @ONLY
      )
  4. 最后,定义了可执行文件及其依赖关系:

    add_executable(example example.cpp)
    target_include_directories(example
      PRIVATE
          ${CMAKE_CURRENT_BINARY_DIR}/generated
      )
  5. 进行测试:

    $ mkdir -p build
    $ cd build
    $ cmake ..
    $ cmake --build .
    $ ./example
    
    This is output from code v2.0.1-rc-2
    Hello CMake world!

工作原理

我们使用以下构造,从一个名为VERSION的文件中读取版本字符串:

if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/VERSION")
  file(READ "${CMAKE_CURRENT_SOURCE_DIR}/VERSION" PROGRAM_VERSION)
  string(STRIP "${PROGRAM_VERSION}" PROGRAM_VERSION)
else()
    message(FATAL_ERROR "File ${CMAKE_CURRENT_SOURCE_DIR}/VERSION not found")
endif()

这里,首先检查该文件是否存在,如果不存在,则发出错误消息。如果存在,将内容读入PROGRAM_VERSION变量中,该变量会去掉尾部的空格。当设置了变量PROGRAM_VERSION,就可以使用它来配置version.hpp.in,生成generated/version.hpp:

configure_file(
  version.hpp.in
  generated/version.hpp
  @ONLY
  )
https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-6/recipe-05