📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 如何实施
  • 工作原理
  • 更多信息

Was this helpful?

  1. 第6章 生成源码

6.4 记录项目版本信息以便报告

Previous6.3 构建时使用Python生成源码Next6.5 从文件中记录项目版本

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,其中包含一个C和Fortran例子。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。

代码版本很重要,不仅是为了可重复性,还为了记录API功能或简化支持请求和bug报告。源代码通常处于某种版本控制之下,例如:可以使用Git标记附加额外版本号(参见 )。然而,不仅需要对源代码进行版本控制,而且可执行文件还需要记录项目版本,以便将其打印到代码输出或用户界面上。

本例中,将在CMake源文件中定义版本号。我们的目标是在配置项目时将程序版本记录到头文件中。然后,生成的头文件可以包含在代码的正确位置和时间,以便将代码版本打印到输出文件或屏幕上。

准备工作

将使用以下C文件(example.c)打印版本信息:

#include "version.h"

#include <stdio.h>

int main() {
  printf("This is output from code %s\n", PROJECT_VERSION);
  printf("Major version number: %i\n", PROJECT_VERSION_MAJOR);
  printf("Minor version number: %i\n", PROJECT_VERSION_MINOR);

  printf("Hello CMake world!\n");
}

这里,假设PROJECT_VERSION_MAJOR、PROJECT_VERSION_MINOR和PROJECT_VERSION是在version.h中定义的。目标是从以下模板中生成version.h.in:

#pragma once

#define PROJECT_VERSION_MAJOR @PROJECT_VERSION_MAJOR@
#define PROJECT_VERSION_MINOR @PROJECT_VERSION_MINOR@
#define PROJECT_VERSION_PATCH @PROJECT_VERSION_PATCH@

#define PROJECT_VERSION "v@PROJECT_VERSION@"

这里使用预处理器定义,也可以使用字符串或整数常量来提高类型安全性(稍后我们将对此进行演示)。从CMake的角度来看,这两种方法是相同的。

如何实施

我们将按照以下步骤,在模板头文件中对版本进行注册:

  1. 要跟踪代码版本,我们可以在CMakeLists.txt中调用CMake的project时定义项目版本:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    project(recipe-04 VERSION 2.0.1 LANGUAGES C)
  2. 然后,基于version.h.in生成version.h:

    configure_file(
      version.h.in
      generated/version.h
      @ONLY
      )
  3. 最后,我们定义了可执行文件,并提供了目标包含路径:

    add_executable(example example.c)
    target_include_directories(example
      PRIVATE
          ${CMAKE_CURRENT_BINARY_DIR}/generated
      )

工作原理

当使用版本参数调用CMake的project时,CMake将为项目设置PROJECT_VERSION_MAJOR、PROJECT_VERSION_MINOR和PROJECT_VERSION_PATCH。此示例中的关键命令是configure_file,它接受一个输入文件(本例中是version.h.in),通过将@之间的占位符替换成对应的CMake变量,生成一个输出文件(本例中是generate/version.h)。它将@PROJECT_VERSION_MAJOR@替换为2,以此类推。使用关键字@ONLY,我们将configure_file限制为只替换@variables@,而不修改${variables}。后一种形式在version.h.in中没有使用。但是,当使用CMake配置shell脚本时,会经常出现。

生成的头文件可以包含在示例代码中,可以打印版本信息:

$ mkdir -p build
$ cd build
$ cmake ..
$ cmake --build .
$ ./example

This is output from code v2.0.1
Major version number: 2
Minor version number: 0
Hello CMake world!

NOTE:CMake以x.y.z格式给出的版本号,并将变量PROJECT_VERSION和<project-name>_VERSION设置为给定的值。此外,PROJECT_VERSION_MAJOR(<project-name>_VERSION_MAJOR),PROJECT_VERSION_MINOR(<project-name>_VERSION_MINOR) PROJECT_VERSION_PATCH(<project-name>_VERSION_PATCH)和PROJECT_VERSION_TWEAK(<project-name>_VERSION_TWEAK),将分别设置为X, Y, Z和t。

更多信息

为了确保只有当CMake变量被认为是一个真正的常量时,才定义预处理器变量,可以使用configure_file,在配置的头文件中使用#cmakedefin而不是#define。

根据是否定义了CMake变量并将其计算为一个真正的常量,#cmakedefine YOUR_VARIABLE将被替换为#define YOUR_VARIABLE …或者/* #undef YOUR_VARIABLE */。还有#cmakedefine01,将根据变量是否定义,将变量设置为0或1。

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-6/recipe-04
https://semver.org