📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理
  • 更多信息

Was this helpful?

  1. 第8章 超级构建模式

8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架

Previous8.3 使用超级构建管理依赖项:Ⅱ.FFTW库Next8.5 使用超级构建支持项目

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,其中有一个C++示例。该示例在CMake 3.11版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。在库中也有一个例子可以在CMake 3.5下使用。

第4章第3节中,我们使用Google Test框架实现单元测试,并在配置时使用FetchContent模块获取Google Test源(自CMake 3.11开始可用)。本章中,我们将重新讨论这个方法,较少关注测试方面,并更深入地研究FetchContent。它提供了一个简单通用的模块,可以在配置时组装项目依赖项。对于3.11以下的CMake,我们还将讨论如何在配置时使用ExternalProject_Add模拟FetchContent。

准备工作

这个示例中,我们将复用第4章第3节的源码,构建main.cpp、sum_integer.cpp和sum_integers.hpp和test.cpp。我们将在配置时使用FetchContent或ExternalProject_Add下载所有必需的Google Test源,在此示例中,只关注在配置时获取依赖项,而不是实际的源代码及其单元测试。

具体实施

这个示例中,我们只关注如何获取Google Test源来构建gtest_main,并链接到Google Test库。关于这个目标如何用于测试示例源的讨论,请读者参考第4章第3节:

  1. 首先包括FetchContent模块,它将提供需要的声明、查询和填充依赖项函数:

    include(FetchContent)
  2. 然后,声明内容——名称、存储库位置和要获取的精确版本:

    FetchContent_Declare(
      googletest
      GIT_REPOSITORY https://github.com/google/googletest.git
      GIT_TAG release-1.8.0
    )
  3. 查询内容是否已经被获取/填充:

    FetchContent_GetProperties(googletest)
  4. 前面的函数定义了googletest_POPULATED。如果内容还没有填充,我们获取内容并配置子项目:

    if(NOT googletest_POPULATED)
      FetchContent_Populate(googletest)
    
      # ...
    
      # adds the targets: gtest, gtest_main, gmock, gmock_main
      add_subdirectory(
        ${googletest_SOURCE_DIR}
        ${googletest_BINARY_DIR}
        )
    
      # ...
    
    endif()
  5. 注意配置时获取内容的方式:

    $ mkdir -p build
    $ cd build
    $ cmake ..
  6. 这将生成以下构建目录树。Google Test源现已就绪,剩下的就交由CMake处理,并提供所需的目标:

    build/
    ├── ...
    ├── _deps
    │    ├── googletest-build
    │    │    ├── ...
    │    │    └── ...
    │    ├── googletest-src
    │    │    ├── ...
    │    │    └── ...
    │    └── googletest-subbuild
    │         ├── ...
    │         └── ...
    └── ...

工作原理

FetchContent模块支持在配置时填充内容。例子中,获取了一个Git库,其中有一个Git标签:

FetchContent_Declare(
  googletest
  GIT_REPOSITORY https://github.com/google/googletest.git
  GIT_TAG release-1.8.0
)

CMake的3.11版本中,FetchContent已经成为CMake的标准部分。下面的代码中,将尝试在配置时使用ExternalProject_Add模拟FetchContent。这不仅适用于较老的CMake版本,而且可以让我们更深入地了解FetchContent层下面发生了什么,并为使用ExternalProject_Add在构建时获取项目,提供一个有趣的替代方法。我们的目标是编写一个fetch_git_repo宏,并将它放在fetch_git_repo中。这样就可以获取相应的内容了:

include(fetch_git_repo.cmake)

fetch_git_repo(
  googletest
  ${CMAKE_BINARY_DIR}/_deps
  https://github.com/google/googletest.git
  release-1.8.0
)

# ...

# adds the targets: gtest, gtest_main, gmock, gmock_main
add_subdirectory(
  ${googletest_SOURCE_DIR}
  ${googletest_BINARY_DIR}
  )

# ...

这类似于FetchContent的使用。在底层实现中,我们将使用ExternalProject_Add。现在打开模块,检查fetch_git_repo.cmake中定义的fetch_git_repo:

macro(fetch_git_repo _project_name _download_root _git_url _git_tag)

  set(${_project_name}_SOURCE_DIR ${_download_root}/${_project_name}-src)
  set(${_project_name}_BINARY_DIR ${_download_root}/${_project_name}-build)

  # variables used configuring fetch_git_repo_sub.cmake
  set(FETCH_PROJECT_NAME ${_project_name})
  set(FETCH_SOURCE_DIR ${${_project_name}_SOURCE_DIR})
  set(FETCH_BINARY_DIR ${${_project_name}_BINARY_DIR})
  set(FETCH_GIT_REPOSITORY ${_git_url})
  set(FETCH_GIT_TAG ${_git_tag})

  configure_file(
    ${CMAKE_CURRENT_LIST_DIR}/fetch_at_configure_step.in
    ${_download_root}/CMakeLists.txt
    @ONLY
    )

  # undefine them again
  unset(FETCH_PROJECT_NAME)
  unset(FETCH_SOURCE_DIR)
  unset(FETCH_BINARY_DIR)
  unset(FETCH_GIT_REPOSITORY)
  unset(FETCH_GIT_TAG)

  # configure sub-project
  execute_process(
    COMMAND
    "${CMAKE_COMMAND}" -G "${CMAKE_GENERATOR}" .
    WORKING_DIRECTORY
    ${_download_root}
    )

  # build sub-project which triggers ExternalProject_Add
  execute_process(
    COMMAND
    "${CMAKE_COMMAND}" --build .
    WORKING_DIRECTORY
    ${_download_root}
    )
endmacro()

宏接收项目名称、下载根目录、Git存储库URL和一个Git标记。宏定义了${_project_name}_SOURCE_DIR和${_project_name}_BINARY_DIR,我们需要在fetch_git_repo生命周期范围内使用定义的${_project_name}_SOURCE_DIR和${_project_name}_BINARY_DIR,因为要使用它们对子目录进行配置:

add_subdirectory(
  ${googletest_SOURCE_DIR}
  ${googletest_BINARY_DIR}
  )

fetch_git_repo宏中,我们希望使用ExternalProject_Add在配置时获取外部项目,通过三个步骤实现了这一点:

  1. 首先,配置fetch_at_configure_step.in:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    
    project(fetch_git_repo_sub LANGUAGES NONE)
    
    include(ExternalProject)
    
    ExternalProject_Add(
      @FETCH_PROJECT_NAME@
      SOURCE_DIR "@FETCH_SOURCE_DIR@"
      BINARY_DIR "@FETCH_BINARY_DIR@"
      GIT_REPOSITORY
      @FETCH_GIT_REPOSITORY@
      GIT_TAG
      @FETCH_GIT_TAG@
      CONFIGURE_COMMAND ""
      BUILD_COMMAND ""
      INSTALL_COMMAND ""
      TEST_COMMAND ""
      )

    使用configure_file,可以生成一个CMakeLists.txt文件,前面的占位符被fetch_git_repo.cmake中的值替换。注意,前面的ExternalProject_Add命令仅用于获取,而不仅是配置、构建、安装或测试。

  2. 其次,使用配置步骤在配置时触发ExternalProject_Add(从主项目的角度):

    # configure sub-project
    execute_process(
      COMMAND
          "${CMAKE_COMMAND}" -G "${CMAKE_GENERATOR}" .
      WORKING_DIRECTORY
          ${_download_root}
      )
  3. 最后在fetch_git_repo.cmake中触发配置时构建步骤:

    # build sub-project which triggers ExternalProject_Add
    execute_process(
      COMMAND
          "${CMAKE_COMMAND}" --build .
      WORKING_DIRECTORY
          ${_download_root}
      )

这个解决方案的一个优点是,由于外部依赖项不是由ExternalProject_Add配置的,所以不需要通过ExternalProject_Add调用任何配置,将其引导至项目。我们可以使用add_subdirectory配置和构建模块,就像外部依赖项是项目源代码树的一部分一样。聪明的伪装!

更多信息

有关FetchContent选项的详细讨论,请参考 配置时ExternalProject_Add的解决方案灵感来自Craig Scott,博客文章:

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-8/recipe-04
https://cmake.org/cmake/help/v3.11/module/FetchContent.html
https://crascit.com/2015/07/25/cgtest/