📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理

Was this helpful?

  1. 第5章 配置时和构建时的操作

5.5 构建时为特定目标运行自定义命令

Previous5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_targetNext5.6 探究编译和链接命令

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,其中包含一个Fortran例子。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。

本节示例将展示,如何使用add_custom_command的第二个参数,来执行没有输出的自定义操作,这对于构建或链接特定目标之前或之后执行某些操作非常有用。由于自定义命令仅在必须构建目标本身时才执行,因此我们实现了对其执行的目标级控制。我们将通过一个示例来演示,在构建目标之前打印目标的链接,然后在编译后,立即测量编译后,可执行文件的静态分配大小。

准备工作

本示例中,我们将使用Fortran代码(example.f90):

program example

  implicit none

  real(8) :: array(20000000)
  real(8) :: r
  integer :: i

  do i = 1, size(array)
    call random_number(r)
    array(i) = r
  end do

  print *, sum(array)

end program

虽然我们选择了Fortran,但Fortran代码的对于后面的讨论并不重要,因为有很多遗留的Fortran代码,存在静态分配大小的问题。

这段代码中,我们定义了一个包含20,000,000双精度浮点数的数组,这个数组占用160MB的内存。在这里,我们并不是推荐这样的编程实践。一般来说,这些内存的分配和代码中是否使用这段内存无关。一个更好的方法是只在需要时动态分配数组,随后立即释放。

示例代码用随机数填充数组,并计算它们的和——这样是为了确保数组确实被使用,并且编译器不会优化分配。我们将使用Python脚本(static-size.py)来统计二进制文件静态分配的大小,该脚本用size命令来封装:

import subprocess
import sys

# for simplicity we do not check number of
# arguments and whether the file really exists
file_path = sys.argv[-1]
try:
    output = subprocess.check_output(['size', file_path]).decode('utf-8')
except FileNotFoundError:
    print('command "size" is not available on this platform')
    sys.exit(0)

size = 0.0
for line in output.split('\n'):
    if file_path in line:
        # we are interested in the 4th number on this line
        size = int(line.split()[3])

print('{0:.3f} MB'.format(size/1.0e6))

要打印链接行,我们将使用第二个Python helper脚本(echo-file.py)打印文件的内容:

import sys

# for simplicity we do not verify the number and
# type of arguments
file_path = sys.argv[-1]
try:
    with open(file_path, 'r') as f:
print(f.read())
except FileNotFoundError:
    print('ERROR: file {0} not found'.format(file_path))

具体实施

来看看CMakeLists.txt:

  1. 首先声明一个Fortran项目:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    project(recipe-05 LANGUAGES Fortran)
  2. 例子依赖于Python解释器,所以以一种可移植的方式执行helper脚本:

    find_package(PythonInterp REQUIRED)
  3. 本例中,默认为“Release”构建类型,以便CMake添加优化标志:

    if(NOT CMAKE_BUILD_TYPE)
        set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
    endif()
  4. 现在,定义可执行目标:

    add_executable(example "")
    
    target_sources(example
      PRIVATE
          example.f90
      )
  5. 然后,定义一个自定义命令,在example目标在已链接之前,打印链接行:

    add_custom_command(
      TARGET
          example
      PRE_LINK
          COMMAND
              ${PYTHON_EXECUTABLE}
              ${CMAKE_CURRENT_SOURCE_DIR}/echo-file.py
                ${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/example.dir/link.txt
      COMMENT
          "link line:"
      VERBATIM
      )
  6. 测试一下。观察打印的链接行和可执行文件的静态大小:

    $ mkdir -p build
    $ cd build
    $ cmake ..
    $ cmake --build .
    
    Scanning dependencies of target example
    [ 50%] Building Fortran object CMakeFiles/example.dir/example.f90.o
    [100%] Linking Fortran executable example
    link line:
    /usr/bin/f95 -O3 -DNDEBUG -O3 CMakeFiles/example.dir/example.f90.o -o example
    static size of executable:
    160.003 MB
    [100%] Built target example

工作原理

当声明了库或可执行目标,就可以使用add_custom_command将其他命令锁定到目标上。这些命令将在特定的时间执行,与它们所附加的目标的执行相关联。CMake通过以下选项,定制命令执行顺序:

  • PRE_BUILD:在执行与目标相关的任何其他规则之前执行的命令。

  • PRE_LINK:使用此选项,命令在编译目标之后,调用链接器或归档器之前执行。Visual Studio 7或更高版本之外的生成器中使用PRE_BUILD将被解释为PRE_LINK。

  • POST_BUILD:如前所述,这些命令将在执行给定目标的所有规则之后运行。

本例中,将两个自定义命令绑定到可执行目标。PRE_LINK命令将${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/example.dir/link.txt的内容打印到屏幕上。在我们的例子中,链接行是这样的:

link line:
/usr/bin/f95 -O3 -DNDEBUG -O3 CMakeFiles/example.dir/example.f90.o -o example

使用Python包装器来实现这一点,它依赖于shell命令。

第二步中,POST_BUILD自定义命令调用Python helper脚本static-size.py,生成器表达式$<target_file:example>作为参数。CMake将在生成时(即生成生成系统时)将生成器表达式扩展到目标文件路径。然后,Python脚本static-size.py使用size命令获取可执行文件的静态分配大小,将其转换为MB,并打印结果。我们的例子中,获得了预期的160 MB:

static size of executable:
160.003 MB
https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-5/recipe-05