📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理
  • 更多信息

Was this helpful?

  1. 第4章 创建和运行测试

4.5 使用动态分析来检测内存缺陷

Previous4.4 使用Boost Test进行单元测试Next4.6 预期测试失败

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,包含一个C++的示例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。

内存缺陷:写入或读取越界,或者内存泄漏(已分配但从未释放的内存),会产生难以跟踪的bug,最好尽早将它们检查出来。Valgrind( )是一个通用的工具,用来检测内存缺陷和内存泄漏。本节中,我们将在使用CMake/CTest测试时使用Valgrind对内存问题进行警告。

准备工作

对于这个配置,需要三个文件。第一个是测试的实现(我们可以调用文件leaky_implementation.cpp):

#include "leaky_implementation.hpp"

int do_some_work() {

  // we allocate an array
  double *my_array = new double[1000];

  // do some work
  // ...

  // we forget to deallocate it
  // delete[] my_array;

  return 0;
}

还需要相应的头文件(leaky_implementation.hpp):

#pragma once

int do_some_work();

并且,需要测试文件(test.cpp):

#include "leaky_implementation.hpp"

int main() {
  int return_code = do_some_work();

  return return_code;
}

我们希望测试通过,因为return_code硬编码为0。这里我们也期望检测到内存泄漏,因为my_array没有释放。

具体实施

下面展示了如何设置CMakeLists.txt来执行代码动态分析:

  1. 我们首先定义CMake最低版本、项目名称、语言、目标和依赖关系:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    
    project(recipe-05 LANGUAGES CXX)
    
    set(CMAKE_CXX_STANDARD 11)
    set(CMAKE_CXX_EXTENSIONS OFF)
    set(CMAKE_CXX_STANDARD_REQUIRED ON)
    
    add_library(example_library leaky_implementation.cpp)
    
    add_executable(cpp_test test.cpp)
    target_link_libraries(cpp_test example_library)
  2. 然后,定义测试目标,还定义了MEMORYCHECK_COMMAND:

    find_program(MEMORYCHECK_COMMAND NAMES valgrind)
    set(MEMORYCHECK_COMMAND_OPTIONS "--trace-children=yes --leak-check=full")
    
    # add memcheck test action
    include(CTest)
    
    enable_testing()
    
    add_test(
      NAME cpp_test
      COMMAND $<TARGET_FILE:cpp_test>
      )
  3. 运行测试集,报告测试通过情况,如下所示:

    $ ctest
    
    Test project /home/user/cmake-recipes/chapter-04/recipe-05/cxx-example/build
    Start 1: cpp_test
    1/1 Test #1: cpp_test ......................... Passed 0.00 sec
    100% tests passed, 0 tests failed out of 1
    Total Test time (real) = 0.00 sec
  4. 现在,我们希望检查内存缺陷,可以观察到被检测到的内存泄漏:

    $ ctest -T memcheck
    
    Site: myhost
    Build name: Linux-c++
    Create new tag: 20171127-1717 - Experimental
    Memory check project /home/user/cmake-recipes/chapter-04/recipe-05/cxx-example/build
    Start 1: cpp_test
    1/1 MemCheck #1: cpp_test ......................... Passed 0.40 sec
    100% tests passed, 0 tests failed out of 1
    Total Test time (real) = 0.40 sec
    -- Processing memory checking output:
    1/1 MemCheck: #1: cpp_test ......................... Defects: 1
    MemCheck log files can be found here: ( * corresponds to test number)
    /home/user/cmake-recipes/chapter-04/recipe-05/cxx-example/build/Testing/Temporary/MemoryChecker.*.log
    Memory checking results:
    Memory Leak - 1
  5. 最后一步,应该尝试修复内存泄漏,并验证ctest -T memcheck没有报告错误。

工作原理

使用find_program(MEMORYCHECK_COMMAND NAMES valgrind)查找valgrind,并将MEMORYCHECK_COMMAND设置为其绝对路径。我们显式地包含CTest模块来启用memcheck测试操作,可以使用CTest -T memcheck来启用这个操作。此外,使用set(MEMORYCHECK_COMMAND_OPTIONS "--trace-children=yes --leak-check=full"),将相关参数传递给Valgrind。内存检查会创建一个日志文件,该文件可用于详细记录内存缺陷信息。

更多信息

该方法可向测试面板报告内存缺陷,这里演示的功能也可以独立于测试面板使用。我们将在第14章中重新讨论,与CDash一起使用的情况。

NOTE:一些工具,如代码覆盖率和静态分析工具,可以进行类似地设置。然而,其中一些工具的使用更加复杂,因为需要专门的构建和工具链。Sanitizers就是这样一个例子。有关更多信息,请参见 。另外,请参阅第14章,其中讨论了AddressSanitizer和ThreadSanitizer。

有关Valgrind及其特性和选项的文档,请参见 。

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-04/recipe-05
http://valgrind.org
https://github.com/arsenm/sanitizers-cmake
http://valgrind.org