📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理

Was this helpful?

  1. 第9章 语言混合项目

9.2 使用Fortran库构建C/C++项目

Previous9.1 使用C/C++库构建Fortran项目Next9.3 使用Cython构建C++和Python项目

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,其中有一个示例:一个是C++、C和Fortran的混例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。

第3章第4节,展示了如何检测Fortran编写的BLAS和LAPACK线性代数库,以及如何在C++代码中使用它们。这里,将重新讨论这个方式,但这次的角度有所不同:较少地关注检测外部库,会更深入地讨论混合C++和Fortran的方面,以及名称混乱的问题。

准备工作

本示例中,我们将重用第3章第4节源代码。虽然,我们不会修改源码或头文件,但我们会按照第7章“结构化项目”中,讨论的建议修改项目树结构,并得到以下源代码结构:

.
├── CMakeLists.txt
├── README.md
└── src
      ├── CMakeLists.txt
      ├── linear-algebra.cpp
      └── math
            ├── CMakeLists.txt
            ├── CxxBLAS.cpp
            ├── CxxBLAS.hpp
            ├── CxxLAPACK.cpp
            └── CxxLAPACK.hpp

这里,收集了BLAS和LAPACK的所有包装器,它们提供了src/math下的数学库了,主要程序为linear-algebra.cpp。因此,所有源都在src子目录下。我们还将CMake代码分割为三个CMakeLists.txt文件,现在来讨论这些文件。

具体实施

这个项目混合了C++(作为该示例的主程序语言)和C(封装Fortran子例程所需的语言)。在根目录下的CMakeLists.txt文件中,我们需要做以下操作:

  1. 声明一个混合语言项目,并选择C++标准:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    
    project(recipe-02 LANGUAGES CXX C Fortran)
    
    set(CMAKE_CXX_STANDARD 11)
    set(CMAKE_CXX_EXTENSIONS OFF)
    set(CMAKE_CXX_STANDARD_REQUIRED ON)
  2. 使用GNUInstallDirs模块来设置CMake将静态和动态库,以及可执行文件保存的标准目录。我们还指示CMake将Fortran编译的模块文件放在modules目录下:

    include(GNUInstallDirs)
    set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY
        ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
    set(CMAKE_LIBRARY_OUTPUT_DIRECTORY
        ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
    set(CMAKE_RUNTIME_OUTPUT_DIRECTORY
        ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_BINDIR})
    set(CMAKE_Fortran_MODULE_DIRECTORY ${PROJECT_BINARY_DIR}/modules)
  3. 然后,进入下一个子目录:

    add_subdirectory(src)

子文件src/CMakeLists.txt添加了另一个目录math,其中包含线性代数包装器。在src/math/CMakeLists.txt中,我们需要以下操作:

  1. 调用find_package来获取BLAS和LAPACK库的位置:

    find_package(BLAS REQUIRED)
    find_package(LAPACK REQUIRED)
  2. 包含FortranCInterface.cmake模块,并验证Fortran、C和C++编译器是否兼容:

    include(FortranCInterface)
    FortranCInterface_VERIFY(CXX)
  3. 我们还需要生成预处理器宏来处理BLAS和LAPACK子例程的名称问题。同样,FortranCInterface通过在当前构建目录中生成一个名为fc_mangl.h的头文件来提供协助:

    FortranCInterface_HEADER(
      fc_mangle.h
      MACRO_NAMESPACE "FC_"
      SYMBOLS DSCAL DGESV
      )
  4. 接下来,添加了一个库,其中包含BLAS和LAPACK包装器的源代码。我们还指定要找到头文件和库的目录。注意PUBLIC属性,它允许其他依赖于math的目标正确地获得它们的依赖关系:

    add_library(math "")
    
    target_sources(math
      PRIVATE
        CxxBLAS.cpp
        CxxLAPACK.cpp
      )
    
    target_include_directories(math
      PUBLIC
        ${CMAKE_CURRENT_SOURCE_DIR}
        ${CMAKE_CURRENT_BINARY_DIR}
      )
    target_link_libraries(math
      PUBLIC
          ${LAPACK_LIBRARIES}
      )

回到src/CMakeLists.txt,我们最终添加了一个可执行目标,并将其链接到BLAS/LAPACK包装器的数学库:

add_executable(linear-algebra "")

target_sources(linear-algebra
  PRIVATE
      linear-algebra.cpp
  )

target_link_libraries(linear- algebra
  PRIVATE
      math
  )

工作原理

使用find_package确定了要链接到的库。方法和之前一样,需要确保程序能够正确地调用它们定义的函数。第3章第4节中,我们面临的问题是编译器的名称符号混乱。我们使用FortranCInterface模块来检查所选的C和C++编译器与Fortran编译器的兼容性。我们还使用FortranCInterface_HEADER函数生成带有宏的头文件,以处理Fortran子例程的名称混乱。并通过以下代码实现:

FortranCInterface_HEADER(
  fc_mangle.h
  MACRO_NAMESPACE "FC_"
  SYMBOLS DSCAL DGESV
)

这个命令将生成fc_mangl.h头文件,其中包含从Fortran编译器推断的名称混乱宏,并将其保存到当前二进制目录CMAKE_CURRENT_BINARY_DIR中。我们小心地将CMAKE_CURRENT_BINARY_DIR设置为数学目标的包含路径。生成的fc_mangle.h如下:

#ifndef FC_HEADER_INCLUDED
#define FC_HEADER_INCLUDED

/* Mangling for Fortran global symbols without underscores. */
#define FC_GLOBAL(name,NAME) name##_

/* Mangling for Fortran global symbols with underscores. */
#define FC_GLOBAL_(name,NAME) name##_

/* Mangling for Fortran module symbols without underscores. */
#define FC_MODULE(mod_name,name, mod_NAME,NAME) __##mod_name##_MOD_##name

/* Mangling for Fortran module symbols with underscores. */
#define FC_MODULE_(mod_name,name, mod_NAME,NAME) __##mod_name##_MOD_##name

/* Mangle some symbols automatically. */
#define DSCAL FC_GLOBAL(dscal, DSCAL)
#define DGESV FC_GLOBAL(dgesv, DGESV)
#endif

本例中的编译器使用下划线进行错误处理。由于Fortran不区分大小写,子例程可能以小写或大写出现,这就说明将这两种情况传递给宏的必要性。注意,CMake还将为隐藏在Fortran模块后面的符号生成宏。

NOTE:现在,BLAS和LAPACK的许多实现都在Fortran子例程附带了一个C的包装层。这些包装器已经标准化,分别称为CBLAS和LAPACKE。

由于已经将源组织成库目标和可执行目标,所以我们应该对目标的PUBLIC、INTERFACE和PRIVATE可见性属性的使用进行评论。与源文件一样,包括目录、编译定义和选项,当与target_link_libraries一起使用时,这些属性的含义是相同的:

  • 使用PRIVATE属性,库将只链接到当前目标,而不链接到使用它的任何其他目标。

  • 使用INTERFACE属性,库将只链接到使用当前目标作为依赖项的目标。

  • 使用PUBLIC属性,库将被链接到当前目标,以及将其作为依赖项使用的任何其他目标。

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-9/recipe-02