📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理
  • 更多信息

Was this helpful?

  1. 第6章 生成源码

6.1 配置时生成源码

Previous第6章 生成源码Next6.2 使用Python在配置时生成源码

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,其中包含一个Fortran/C例子。该示例在CMake 3.10版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows(使用MSYS Makefiles)上进行过测试。

代码生成在配置时发生,例如:CMake可以检测操作系统和可用库;基于这些信息,我们可以定制构建的源代码。本节和下面的章节中,我们将演示如何生成一个简单源文件,该文件定义了一个函数,用于报告构建系统配置。

准备工作

此示例的代码使用Fortran和C语言编写,第9章将讨论混合语言编程。主程序是一个简单的Fortran可执行程序,它调用一个C函数print_info(),该函数将打印配置信息。值得注意的是,在使用Fortran 2003时,编译器将处理命名问题(对于C函数的接口声明),如示例所示。我们将使用的example.f90作为源文件:

program hello_world

  implicit none

  interface
      subroutine print_info() bind(c, name="print_info")
      end subroutine
  end interface

  call print_info()

end program

C函数print_info()在模板文件print_info.c.in中定义。在配置时,以@开头和结尾的变量将被替换为实际值:

#include <stdio.h>
#include <unistd.h>

void print_info(void)
{
  printf("\n");
  printf("Configuration and build information\n");
  printf("-----------------------------------\n");
  printf("\n");
  printf("Who compiled | %s\n", "@_user_name@");
  printf("Compilation hostname | %s\n", "@_host_name@");
  printf("Fully qualified domain name | %s\n", "@_fqdn@");
  printf("Operating system | %s\n",
         "@_os_name@, @_os_release@, @_os_version@");
  printf("Platform | %s\n", "@_os_platform@");
  printf("Processor info | %s\n",
         "@_processor_name@, @_processor_description@");
  printf("CMake version | %s\n", "@CMAKE_VERSION@");
  printf("CMake generator | %s\n", "@CMAKE_GENERATOR@");
  printf("Configuration time | %s\n", "@_configuration_time@");
  printf("Fortran compiler | %s\n", "@CMAKE_Fortran_COMPILER@");
  printf("C compiler | %s\n", "@CMAKE_C_COMPILER@");
  printf("\n");

  fflush(stdout);
}

具体实施

在CMakeLists.txt中,我们首先必须对选项进行配置,并用它们的值替换print_info.c.in中相应的占位符。然后,将Fortran和C源代码编译成一个可执行文件:

  1. 声明了一个Fortran-C混合项目:

    cmake_minimum_required(VERSION 3.10 FATAL_ERROR)
    project(recipe-01 LANGUAGES Fortran C)
  2. 使用execute_process为项目获取当且使用者的信息:

    execute_process(
      COMMAND
          whoami
      TIMEOUT
          1
      OUTPUT_VARIABLE
          _user_name
      OUTPUT_STRIP_TRAILING_WHITESPACE
      )
  3. 使用cmake_host_system_information()函数(已经在第2章第5节遇到过),可以查询很多系统信息:

    # host name information
    cmake_host_system_information(RESULT _host_name QUERY HOSTNAME)
    cmake_host_system_information(RESULT _fqdn QUERY FQDN)
    
    # processor information
    cmake_host_system_information(RESULT _processor_name QUERY PROCESSOR_NAME)
    cmake_host_system_information(RESULT _processor_description QUERY PROCESSOR_DESCRIPTION)
    
    # os information
    cmake_host_system_information(RESULT _os_name QUERY OS_NAME)
    cmake_host_system_information(RESULT _os_release QUERY OS_RELEASE)
    cmake_host_system_information(RESULT _os_version QUERY OS_VERSION)
    cmake_host_system_information(RESULT _os_platform QUERY OS_PLATFORM)
  4. 捕获配置时的时间戳,并通过使用字符串操作函数:

    string(TIMESTAMP _configuration_time "%Y-%m-%d %H:%M:%S [UTC]" UTC)
  5. 现在,准备好配置模板文件print_info.c.in。通过CMake的configure_file函数生成代码。注意,这里只要求以@开头和结尾的字符串被替换:

    configure_file(print_info.c.in print_info.c @ONLY)
  6. 最后,我们添加一个可执行目标,并定义目标源:

    add_executable(example "")
    target_sources(example
      PRIVATE
        example.f90
        ${CMAKE_CURRENT_BINARY_DIR}/print_info.c
      )
  7. 下面是一个输出示例:

    $ mkdir -p build
    $ cd build
    $ cmake ..
    $ cmake --build .
    $ ./example
    
    Configuration and build information
    -----------------------------------
    Who compiled | somebody
    Compilation hostname | laptop
    Fully qualified domain name | laptop
    Operating system | Linux, 4.16.13-1-ARCH, #1 SMP PREEMPT Thu May 31 23:29:29 UTC 2018
    Platform | x86_64
    Processor info | Unknown P6 family, 2 core Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
    CMake version | 3.11.3
    CMake generator | Unix Makefiles
    Configuration time | 2018-06-25 15:38:03 [UTC]
    Fortran compiler | /usr/bin/f95
    C compiler | /usr/bin/cc

工作原理

configure_file命令可以复制文件,并用变量值替换它们的内容。示例中,使用configure_file修改模板文件的内容,并将其复制到一个位置,然后将其编译到可执行文件中。如何调用configure_file:

configure_file(print_info.c.in print_info.c @ONLY)

第一个参数是模板的名称为print_info.c.in。CMake假设输入文件的目录,与项目的根目录相对;也就是说,在${CMAKE_CURRENT_SOURCE_DIR}/print_info.c.in。我们选择print_info.c,作为第二个参数是配置文件的名称。假设输出文件位于相对于项目构建目录的位置:${CMAKE_CURRENT_BINARY_DIR}/print_info.c。

输入和输出文件作为参数时,CMake不仅将配置@VAR@变量,还将配置${VAR}变量。如果${VAR}是语法的一部分,并且不应该修改(例如在shell脚本中),那么就很不方便。为了在引导CMake,应该将选项@ONLY传递给configure_file的调用,如前所述。

更多信息

注意,用值替换占位符时,CMake中的变量名应该与将要配置的文件中使用的变量名完全相同,并放在@之间。可以在调用configure_file时定义的任何CMake变量。我们的示例中,这包括所有内置的CMake变量,如CMAKE_VERSION或CMAKE_GENERATOR。此外,每当修改模板文件时,重新生成代码将触发生成系统的重新生成。这样,配置的文件将始终保持最新。

TIPS:通过使用CMake --help-variable-list,可以从CMake手册中获得完整的内部CMake变量列表。

NOTE:file(GENERATE…)为提供了一个有趣的替代configure_file,这是因为file允许将生成器表达式作为配置文件的一部分进行计算。但是,每次运行CMake时,file(GENERATE…)都会更新输出文件,这将强制重新构建依赖于该输出的所有目标。详细可参见 。

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-6/recipe-01
https://crascit.com/2017/04/18/generated-sources-in-cmake-build