📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理
  • 更多信息

Was this helpful?

  1. 第2章 检测环境

2.4 检测处理器体系结构

Previous2.3 处理与编译器相关的源代码Next2.5 检测处理器指令集

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到,包含一个C++示例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。

19世纪70年代,出现的64位整数运算和本世纪初出现的用于个人计算机的64位寻址,扩大了内存寻址范围,开发商投入了大量资源来移植为32位体系结构硬编码,以支持64位寻址。许多博客文章,如 ,致力于讨论将C++代码移植到64位平台中的典型问题和解决方案。虽然,避免显式硬编码的方式非常明智,但需要在使用CMake配置的代码中适应硬编码限制。本示例中,我们会来讨论检测主机处理器体系结构的选项。

准备工作

我们以下面的arch-dependent.cpp代码为例:

#include <cstdlib>
#include <iostream>
#include <string>

#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)

std::string say_hello()
{
  std::string arch_info(TOSTRING(ARCHITECTURE));
  arch_info += std::string(" architecture. ");
#ifdef IS_32_BIT_ARCH
  return arch_info + std::string("Compiled on a 32 bit host processor.");
#elif IS_64_BIT_ARCH
  return arch_info + std::string("Compiled on a 64 bit host processor.");
#else
  return arch_info + std::string("Neither 32 nor 64 bit, puzzling ...");
#endif
}

int main()
{
  std::cout << say_hello() << std::endl;
  return EXIT_SUCCESS;
}

具体实施

CMakeLists.txt文件中,我们需要以下内容:

  1. 首先,定义可执行文件及其源文件依赖关系:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    project(recipe-04 LANGUAGES CXX)
    add_executable(arch-dependent arch-dependent.cpp)
  2. 检查空指针类型的大小。CMake的CMAKE_SIZEOF_VOID_P变量会告诉我们CPU是32位还是64位。我们通过状态消息让用户知道检测到的大小,并设置预处理器定义:

    if(CMAKE_SIZEOF_VOID_P EQUAL 8)
      target_compile_definitions(arch-dependent PUBLIC "IS_64_BIT_ARCH")
      message(STATUS "Target is 64 bits")
    else()
      target_compile_definitions(arch-dependent PUBLIC "IS_32_BIT_ARCH")
      message(STATUS "Target is 32 bits")
    endif()
  3. 通过定义以下目标编译定义,让预处理器了解主机处理器架构,同时在配置过程中打印状态消息:

    if(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "i386")
        message(STATUS "i386 architecture detected")
    elseif(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "i686")
        message(STATUS "i686 architecture detected")
    elseif(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "x86_64")
        message(STATUS "x86_64 architecture detected")
    else()
        message(STATUS "host processor architecture is unknown")
    endif()
    target_compile_definitions(arch-dependent
      PUBLIC "ARCHITECTURE=${CMAKE_HOST_SYSTEM_PROCESSOR}"
      )
  4. 配置项目,并注意状态消息(打印出的信息可能会发生变化):

    $ mkdir -p build
    $ cd build
    $ cmake ..
    
    ...
    -- Target is 64 bits
    -- x86_64 architecture detected
    ...
  5. 最后,构建并执行代码(实际输出将取决于处理器架构):

    $ cmake --build .
    $ ./arch-dependent
    
    x86_64 architecture. Compiled on a 64 bit host processor.

工作原理

CMake定义了CMAKE_HOST_SYSTEM_PROCESSOR变量,以包含当前运行的处理器的名称。可以设置为“i386”、“i686”、“x86_64”、“AMD64”等等,当然,这取决于当前的CPU。CMAKE_SIZEOF_VOID_P为void指针的大小。我们可以在CMake配置时进行查询,以便修改目标或目标编译定义。可以基于检测到的主机处理器体系结构,使用预处理器定义,确定需要编译的分支源代码。正如在前面的示例中所讨论的,编写新代码时应该避免这种依赖,但在处理遗留代码或交叉编译时,这种依赖是有用的,交叉编译会在第13章进行讨论。

NOTE:使用CMAKE_SIZEOF_VOID_P是检查当前CPU是否具有32位或64位架构的唯一“真正”可移植的方法。

更多信息

#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
    #error cmake_arch i386
#elif defined(__x86_64) || defined(__x86_64__) || defined(__amd64) || defined(_M_X64)
    #error cmake_arch x86_64
#endif

这种策略也是检测目标处理器体系结构的推荐策略,因为CMake似乎没有提供可移植的内在解决方案。另一种选择,将只使用CMake,完全不使用预处理器,代价是为每种情况设置不同的源文件,然后使用target_source命令将其设置为可执行目标arch-dependent依赖的源文件:

add_executable(arch-dependent "")

if(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "i386")
    message(STATUS "i386 architecture detected")
    target_sources(arch-dependent
        PRIVATE
        arch-dependent-i386.cpp
    )
elseif(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "i686")
    message(STATUS "i686 architecture detected")
    target_sources(arch-dependent
        PRIVATE
            arch-dependent-i686.cpp
    )
elseif(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "x86_64")
    message(STATUS "x86_64 architecture detected")
    target_sources(arch-dependent
        PRIVATE
            arch-dependent-x86_64.cpp
    )
else()
    message(STATUS "host processor architecture is unknown")
endif()

这种方法,显然需要对现有项目进行更多的工作,因为源文件需要分离。此外,不同源文件之间的代码复制肯定也会成为问题。

除了CMAKE_HOST_SYSTEM_PROCESSOR, CMake还定义了CMAKE_SYSTEM_PROCESSOR变量。前者包含当前运行的CPU在CMake的名称,而后者将包含当前正在为其构建的CPU的名称。这是一个细微的差别,在交叉编译时起着非常重要的作用。我们将在第13章,看到更多关于交叉编译的内容。另一种让CMake检测主机处理器体系结构,是使用C或C++中定义的符号,结合CMake的try_run函数,尝试构建执行的源代码(见第5.8节)分支的预处理符号。这将返回已定义错误码,这些错误可以在CMake端捕获(此策略的灵感来自 ):

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-02/recipe-04
https://www.viva64.com/en/a/0004/
https://github.com/axr/cmake/blob/master/targetarch.cmake