📘
CMake Cookbook
  • Introduction
  • 前言
  • 第0章 配置环境
    • 0.1 获取代码
    • 0.2 Docker镜像
    • 0.3 安装必要的软件
    • 0.4 测试环境
    • 0.5 上报问题并提出改进建议
  • 第1章 从可执行文件到库
    • 1.1 将单个源文件编译为可执行文件
    • 1.2 切换生成器
    • 1.3 构建和链接静态库和动态库
    • 1.4 用条件句控制编译
    • 1.5 向用户显示选项
    • 1.6 指定编译器
    • 1.7 切换构建类型
    • 1.8 设置编译器选项
    • 1.9 为语言设定标准
    • 1.10 使用控制流
  • 第2章 检测环境
    • 2.1 检测操作系统
    • 2.2 处理与平台相关的源代码
    • 2.3 处理与编译器相关的源代码
    • 2.4 检测处理器体系结构
    • 2.5 检测处理器指令集
    • 2.6 为Eigen库使能向量化
  • 第3章 检测外部库和程序
    • 3.1 检测Python解释器
    • 3.2 检测Python库
    • 3.3 检测Python模块和包
    • 3.4 检测BLAS和LAPACK数学库
    • 3.5 检测OpenMP的并行环境
    • 3.6 检测MPI的并行环境
    • 3.7 检测Eigen库
    • 3.8 检测Boost库
    • 3.9 检测外部库:Ⅰ. 使用pkg-config
    • 3.10 检测外部库:Ⅱ. 自定义find模块
  • 第4章 创建和运行测试
    • 4.1 创建一个简单的单元测试
    • 4.2 使用Catch2库进行单元测试
    • 4.3 使用Google Test库进行单元测试
    • 4.4 使用Boost Test进行单元测试
    • 4.5 使用动态分析来检测内存缺陷
    • 4.6 预期测试失败
    • 4.7 使用超时测试运行时间过长的测试
    • 4.8 并行测试
    • 4.9 运行测试子集
    • 4.10 使用测试固件
  • 第5章 配置时和构建时的操作
    • 5.1 使用平台无关的文件操作
    • 5.2 配置时运行自定义命令
    • 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
    • 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
    • 5.5 构建时为特定目标运行自定义命令
    • 5.6 探究编译和链接命令
    • 5.7 探究编译器标志命令
    • 5.8 探究可执行命令
    • 5.9 使用生成器表达式微调配置和编译
  • 第6章 生成源码
    • 6.1 配置时生成源码
    • 6.2 使用Python在配置时生成源码
    • 6.3 构建时使用Python生成源码
    • 6.4 记录项目版本信息以便报告
    • 6.5 从文件中记录项目版本
    • 6.6 配置时记录Git Hash值
    • 6.7 构建时记录Git Hash值
  • 第7章 构建项目
    • 7.1 使用函数和宏重用代码
    • 7.2 将CMake源代码分成模块
    • 7.3 编写函数来测试和设置编译器标志
    • 7.4 用指定参数定义函数或宏
    • 7.5 重新定义函数和宏
    • 7.6 使用废弃函数、宏和变量
    • 7.7 add_subdirectory的限定范围
    • 7.8 使用target_sources避免全局变量
    • 7.9 组织Fortran项目
  • 第8章 超级构建模式
    • 8.1 使用超级构建模式
    • 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
    • 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
    • 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
    • 8.5 使用超级构建支持项目
  • 第9章 语言混合项目
    • 9.1 使用C/C++库构建Fortran项目
    • 9.2 使用Fortran库构建C/C++项目
    • 9.3 使用Cython构建C++和Python项目
    • 9.4 使用Boost.Python构建C++和Python项目
    • 9.5 使用pybind11构建C++和Python项目
    • 9.6 使用Python CFFI混合C,C++,Fortran和Python
  • 第10章 编写安装程序
    • 10.1 安装项目
    • 10.2 生成输出头文件
    • 10.3 输出目标
    • 10.4 安装超级构建
  • 第11章 打包项目
    • 11.1 生成源代码和二进制包
    • 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
    • 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
    • 11.4 以Conda包的形式发布一个简单的项目
    • 11.5 将Conda包作为依赖项发布给项目
  • 第12章 构建文档
    • 12.1 使用Doxygen构建文档
    • 12.2 使用Sphinx构建文档
    • 12.3 结合Doxygen和Sphinx
  • 第13章 选择生成器和交叉编译
    • 13.1 使用CMake构建Visual Studio 2017项目
    • 13.2 交叉编译hello world示例
    • 13.3 使用OpenMP并行化交叉编译Windows二进制文件
  • 第14章 测试面板
    • 14.1 将测试部署到CDash
    • 14.2 CDash显示测试覆盖率
    • 14.3 使用AddressSanifier向CDash报告内存缺陷
    • 14.4 使用ThreadSaniiser向CDash报告数据争用
  • 第15章 使用CMake构建已有项目
    • 15.1 如何开始迁移项目
    • 15.2 生成文件并编写平台检查
    • 15.3 检测所需的链接和依赖关系
    • 15.4 复制编译标志
    • 15.5 移植测试
    • 15.6 移植安装目标
    • 15.7 进一步迁移的措施
    • 15.8 项目转换为CMake的常见问题
  • 第16章 可能感兴趣的书
    • 16.1 留下评论——让其他读者知道你的想法
Powered by GitBook
On this page
  • 准备工作
  • 具体实施
  • 工作原理
  • 更多信息

Was this helpful?

  1. 第11章 打包项目

11.5 将Conda包作为依赖项发布给项目

Previous11.4 以Conda包的形式发布一个简单的项目Next第12章 构建文档

Last updated 5 years ago

Was this helpful?

NOTE:此示例代码可以在 中找到。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。

这个示例中,我们将基于之前示例的结果,并且为CMake项目准备一个更真实和复杂的Conda包,这将取决于DGEMM的函数实现,对于矩阵与矩阵的乘法,可以使用Intel的MKL库进行。Intel的MKL库可以以Conda包的形式提供。此示例将为我们提供一个工具集,用于准备和共享具有依赖关系的Conda包。

准备工作

对于这个示例,我们将使用与前一个示例中的Conda配置,和相同的文件命名和目录结构:

.
├── CMakeLists.txt
├── conda-recipe
│    └── meta.yaml
└── example.cpp

示例文件(example.cpp)将执行矩阵-矩阵乘法,并将MKL库返回的结果与“noddy”实现进行比较:

#include "mkl.h"

#include <cassert>
#include <cmath>
#include <iostream>
#include <random>

int main() {
  // generate a uniform distribution of real number between -1.0 and 1.0
  std::random_device rd;
  std::mt19937 mt(rd());
  std:: uniform_real_distribution < double > dist(-1.0, 1.0);

  int m = 500;
  int k = 1000;
  int n = 2000;

  double *A = (double *)mkl_malloc(m * k * sizeof(double), 64);
  double *B = (double *)mkl_malloc(k * n * sizeof(double), 64);
  double *C = (double *)mkl_malloc(m * n * sizeof(double), 64);
  double * D = new double[m * n];

  for (int i = 0; i < (m * k); i++) {
    A[i] = dist(mt);
  }

  for (int i = 0; i < (k * n); i++) {
    B[i] = dist(mt);
  }

  for (int i = 0; i < (m * n); i++) {
    C[i] = 0.0;
  }

  double alpha = 1.0;
  double beta = 0.0;
  cblas_dgemm(CblasRowMajor,
              CblasNoTrans,
              CblasNoTrans,
              m,
              n,
              k,
              alpha,
              A,
              k,
              B,
              n,
              beta,
              C,
              n);

  // D_mn = A_mk B_kn
  for (int r = 0; r < m; r++) {
    for (int c = 0; c < n; c++) {
      D[r * n + c] = 0.0;
      for (int i = 0; i < k; i++) {
        D[r * n + c] += A[r * k + i] * B[i * n + c];
      }
    }
  }

  // compare the two matrices
  double r = 0.0;
  for (int i = 0; i < (m * n); i++) {
    r += std::pow(C[i] - D[i], 2.0);
  }
  assert (r < 1.0e-12 & & "ERROR: matrices C and D do not match");

  mkl_free(A);
  mkl_free(B);
  mkl_free(C);
  delete[] D;

  std:: cout << "MKL DGEMM example worked!" << std:: endl;

  return 0;`
}

我们还需要修改meta.yaml。然而,与上一个示例相比,唯一的变化是在依赖项中加入了mkl-devel:

package:
  name: conda-example-dgemm
  version: "0.0.0"

source:
  path: ../ # this can be changed to git-url

build:
  number: 0
  script:
  - cmake -H. -Bbuild_conda -G "${CMAKE_GENERATOR}"
  -DCMAKE_INSTALL_PREFIX=${PREFIX} # [not win]
  - cmake -H. -Bbuild_conda -G "%CMAKE_GENERATOR%"
  -DCMAKE_INSTALL_PREFIX="%LIBRARY_PREFIX%" # [win]
  - cmake - -build build_conda - -target install

requirements:
  build:
    - cmake >=3.5
    - {{ compiler('cxx') }}
  host:
    - mkl - devel 2018

about:
  home: http://www.example.com
  license: MIT
  summary: "Summary in here ..."

具体实施

  1. CMakeLists.txt文件声明了最低版本、项目名称和支持的语言:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    project(recipe-05 LANGUAGES CXX)
    set(CMAKE_CXX_STANDARD 11)
    set(CMAKE_CXX_EXTENSIONS OFF)
    set(CMAKE_CXX_STANDARD_REQUIRED ON)
  2. 使用example.cpp构建dgem-example可执行目标:

    add_executable(dgemm-example "")
    target_sources(dgemm-example
      PRIVATE
          example.cpp
      )
  3. add_library(IntelMKL INTERFACE)
    
    target_compile_options(IntelMKL
      INTERFACE
          $<$<OR:$<CXX_COMPILER_ID:GNU>,$<CXX_COMPILER_ID:AppleClang>>:-m64>
      )
  4. 接下来,查找mkl.h头文件,并为IntelMKL目标设置include目录:

    find_path(_mkl_h
      NAMES
          mkl.h
      HINTS
          ${CMAKE_INSTALL_PREFIX}/include
      )
    
    target_include_directories(IntelMKL
      INTERFACE
          ${_mkl_h}
      )
    
    message(STATUS "MKL header file FOUND: ${_mkl_h}")
  5. 最后,为IntelMKL目标设置链接库:

    find_library(_mkl_libs
      NAMES
        mkl_rt
      HINTS
        ${CMAKE_INSTALL_PREFIX}/lib
      )
    message(STATUS "MKL single dynamic library FOUND: ${_mkl_libs}")
    
    find_package(Threads QUIET)
    target_link_libraries(IntelMKL
      INTERFACE
        ${_mkl_libs}
        $<$<OR:$<CXX_COMPILER_ID:GNU>,$<CXX_COMPILER_ID:AppleClang>>:Threads::Threads>
        $<$<OR:$<CXX_COMPILER_ID:GNU>,$<CXX_COMPILER_ID:AppleClang>>:m>
      )
  6. 使用cmake_print_properties函数,打印IntelMKL目标的信息:

    include(CMakePrintHelpers)
    cmake_print_properties(
      TARGETS
          IntelMKL
      PROPERTIES
        INTERFACE_COMPILE_OPTIONS
        INTERFACE_INCLUDE_DIRECTORIES
        INTERFACE_LINK_LIBRARIES
      )
  7. 将这些库连接到dgem-example:

    target_link_libraries(dgemm-example
      PRIVATE
          IntelMKL
      )
  8. CMakeLists.txt中定义了安装目标:

    install(
      TARGETS
          dgemm-example
      DESTINATION
          bin
      )
  9. 尝试构建包:

    $ conda build conda-recipe
  10. 过程中屏幕上将看到大量输出,但是一旦构建完成,就可以对包进行安装包。首先,在本地进行安装测试:

    $ conda install --use-local conda-example-dgemm
  11. 现在测试安装,打开一个新的终端(假设Anaconda处于激活状态),并输入:

    $ dgemm-example
    
    MKL DGEMM example worked!
  12. 安装成功之后,再进行卸载:

    $ conda remove conda-example-dgemm

工作原理

首先,我们用INTERFACE属性声明一个名为IntelMKL的新库。然后,根据需要设置属性,并使用INTERFACE属性在目标上调用适当的CMake命令:

  • target_compile_options:用于设置INTERFACE_COMPILE_OPTIONS。示例中,设置了-m64,不过这个标志只有GNU和AppleClange编译器能够识别。并且,我们使用生成器表达式来实现。

  • target_include_directories:用于设置INTERFACE_INCLUDE_DIRECTORIES。使用find_path,可以在找到系统上的mkl.h头文件后设置这些参数。

  • target_link_libraries:用于设置INTERFACE_LINK_LIBRARIES。我们决定链接动态库libmkl_rt.so,并用find_library搜索它。GNU或AppleClang编译器还需要将可执行文件链接到线程和数学库。同样,这些情况可以使用生成器表达式优雅地进行处理。

在IntelMKL目标上设置的属性后,可以通过cmake_print_properties命令将属性进行打印。最后,链接到IntelMKL目标,这将设置编译器标志,包括目录和链接库:

target_link_libraries(dgemm-example
  PRIVATE
      IntelMKL
  )

更多信息

Anaconda云上包含大量包。使用上述方法,可以为CMake项目构建依赖于其他Conda包的Conda包。这样,就可以探索软件功能的各种可能性,并与他人分享您的软件包!

然后,需要找到通过MKL-devel安装的MKL库。我们准备了一个名为IntelMKL的INTERFACE库,该库可以用于其他目标,并将为依赖的目标设置包括目录、编译器选项和链接库。根据Intel的建议( )进行设置。首先,设置编译器选项:

meta.yaml中的变化就是mml-devel依赖项。从CMake的角度来看,这里的挑战是定位Anaconda安装的MKL库。幸运的是,我们知道它位于${CMAKE_INSTALL_PREFIX}中。可以使用在线的Intel MKL link line advisor() 查看如何根据选择的平台和编译器,将MKL链接到我们的项目中,我们会将此信息封装到INTERFACE库中。这个解决方案非常适合类MKL的情况:库不是由我们的项目或任何子项目创建的目标,但是它仍然需要以一种方式进行处理;也就是:设置编译器标志,包括目录和链接库。INTERFACE库是构建系统中的目标,但不创建任何构建输出(至少不会直接创建)。但由于它们是目标,我们可对它们的属性进行设置。这样与“实际”目标一样,可以安装、导出和导入。

https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-11/recipe-05
https://software.intel.com/en-us/articles/intel-mml-link-line-advisor/
https://software.intel.com/en-us/articles/intel-mml-link-line-advisor/