计算两个vector的误差和
Last updated
Last updated
对两个值进行计算的时候,计算机的计算结果与我们期望的结果有一定的差别。比如,测量由多个数据点组成的信号之间的差异,通常会涉及相应数据点的循环和减法等计算。
我们给出一个简单的计算信号a与信号b之间的误差公式:
对于每一个i
,都会计算一次a[i] - b[i]
,对差值求平方(负值和正值就能进行比较),最后计算平方差的和。通常我们会使用循环来做这件事,但是为了让事情更加好玩,我们决定使用STL算法来完成。使用STL的好处是,无需耦合特定的数据结果。我们的算法能够适应vector
和类似链表的数据结构,不用直接进行索引。
本节,我们将创建两个信号,并计算这两个信号之间的误差:
依旧是包含必要的头文件和声明所使用的命名空间。
我们将对两个信号的误差和进行计算。这两个信号一个是sine
,另一个信号也是sine
,不过其中之一的使用double
类型进行保存,另一个使用int
类型进行保存。因为double
和int
类型表示数值的范围有差异,就像是模拟信号as
转换成数字信号ds
。
为了生成一个sin
波形,我们事先了一个简单的Lambda表达式,并可以传入一个可变的计数变量n
。我们可以经常在需要的时候调用表达式,其将返回下一个时间点的sine
波形。std::generate
可以使用信号值来填充数组,并且使用std::copy
将数组中的double
类型的变量,转换成int
类型变量:
我们可以对信号进行打印,也可以使用绘图进行显示:
现在来计算误差和,我们使用std::inner_product
,因为这个函数能帮助我们计算两个信号矢量的差异。该函数能在指定范围内进行迭代,然后选择相应位置上进行差值计算,然后在进行平方,再进行相加:
编译并运行程序,我们就能得到两条曲线,还有一条曲线代表的是两个信号的误差和。最终这两个信号的误差为40.889。当我们使用连续的方式对误差进行统计,要对值进行逐对匹配,然后得到无法曲线,其就像我们在下图中看到的一样:
本节,我们需要将两个向量放入循环中,然后对不同位置的值计算差值,然后差值进行平方,最后使用std::inner_product
将差的平方进行加和。这样,我们可以使用Lambda表达式来完成求差值平方的操作——[](double a, double b){return pow(a - b), 2}
,这样就可以通过传入不同的参数来计算差值平方。
这里我们可以看下std::inner_product
是如何工作的:
算法会接受一对begin/end
迭代器作为第一个输入范围,另一个begin
迭代器代表第二个输入范围。我们的例子中,这些迭代器所指向的是vector
,并对这两个vector
进行误差和的计算。val
是一个初始化值。我们这里将其设置为0.0
。然后,算法可以接受两个二元函数,分别为bin_op1
和bin_op2
。
我们会发现,这个算法与std::accumulate
很相似。不过std::accumulate
只对一个范围进行操作。当将bin_op2(*it1, *it2)
看做一个迭代器,那么我们可以简单的是用accumulate
算法进行计算了。所以,我们可以将std::inner_product
看成是带有打包输入范围的std::accumulate
。
例子中,打包函数就是pow(a - b, 2)
。因为我们需要将所有元素的差平方进行加和,所以我们选择std::plus<double>
作为bin_op1
。