C++17 STL Cook Book
  • Introduction
  • 前言
  • 关于本书
  • 各章梗概
  • 第1章 C++17的新特性
    • 使用结构化绑定来解包绑定的返回值
    • 将变量作用域限制在if和switch区域内
    • 新的括号初始化规则
    • 构造函数自动推导模板的类型
    • 使用constexpr-if简化编译
    • 只有头文件的库中启用内联变量
    • 使用折叠表达式实现辅助函数
  • 第2章 STL容器
    • 擦除/移除std::vector元素
    • 以O(1)的时间复杂度删除未排序std::vector中的元素
    • 快速或安全的访问std::vector实例的方法
    • 保持对std::vector实例的排序
    • 向std::map实例中高效并有条件的插入元素
    • 了解std::map::insert新的插入提示语义
    • 高效的修改std::map元素的键值
    • std::unordered_map中使用自定义类型
    • 过滤用户的重复输入,并以字母序将重复信息打印出——std::set
    • 实现简单的逆波兰表示法计算器——std::stack
    • 实现词频计数器——std::map
    • 实现写作风格助手用来查找文本中很长的句子——std::multimap
    • 实现个人待办事项列表——std::priority_queue
  • 第3章 迭代器
    • 建立可迭代区域
    • 让自己的迭代器与STL的迭代器兼容
    • 使用迭代适配器填充通用数据结构
    • 使用迭代器实现算法
    • 使用反向迭代适配器进行迭代
    • 使用哨兵终止迭代
    • 使用检查过的迭代器自动化检查迭代器代码
    • 构建zip迭代适配器
  • 第4章 Lambda表达式
    • 使用Lambda表达式定义函数
    • 使用Lambda为std::function添加多态性
    • 并置函数
    • 通过逻辑连接创建复杂谓词
    • 使用同一输入调用多个函数
    • 使用std::accumulate和Lambda函数实现transform_if
    • 编译时生成笛卡尔乘积
  • 第5章 STL基础算法
    • 容器间相互复制元素
    • 容器元素排序
    • 从容器中删除指定元素
    • 改变容器内容
    • 在有序和无序的vector中查找元素
    • 将vector中的值控制在特定数值范围内——std::clamp
    • 在字符串中定位模式并选择最佳实现——std::search
    • 对大vector进行采样
    • 生成输入序列的序列
    • 实现字典合并工具
  • 第6章 STL算法的高级使用方式
    • 使用STL算法实现单词查找树类
    • 使用树实现搜索输入建议生成器
    • 使用STL数值算法实现傅里叶变换
    • 计算两个vector的误差和
    • 使用ASCII字符曼德尔布罗特集合
    • 实现分割算法
    • 将标准算法进行组合
    • 删除词组间连续的空格
    • 压缩和解压缩字符串
  • 第7章 字符串, 流和正则表达
    • 创建、连接和转换字符串
    • 消除字符串开始和结束处的空格
    • 无需构造获取std::string
    • 从用户的输入读取数值
    • 计算文件中的单词数量
    • 格式化输出
    • 使用输入文件初始化复杂对象
    • 迭代器填充容器——std::istream
    • 迭代器进行打印——std::ostream
    • 使用特定代码段将输出重定向到文件
    • 通过集成std::char_traits创建自定义字符串类
    • 使用正则表达式库标记输入
    • 简单打印不同格式的数字
    • 从std::iostream错误中获取可读异常
  • 第8章 工具类
    • 转换不同的时间单位——std::ratio
    • 转换绝对时间和相对时间——std::chrono
    • 安全的标识失败——std::optional
    • 对元组使用函数
    • 使用元组快速构成数据结构
    • 将void*替换为更为安全的std::any
    • 存储不同的类型——std::variant
    • 自动化管理资源——std::unique_ptr
    • 处理共享堆内存——std::shared_ptr
    • 对共享对象使用弱指针
    • 使用智能指针简化处理遗留API
    • 共享同一对象的不同成员
    • 选择合适的引擎生成随机数
    • 让STL以指定分布方式产生随机数
  • 第9章 并行和并发
    • 标准算法的自动并行
    • 让程序在特定时间休眠
    • 启动和停止线程
    • 打造异常安全的共享锁——std::unique_lock和std::shared_lock
    • 避免死锁——std::scoped_lock
    • 同步并行中使用std::cout
    • 进行延迟初始化——std::call_once
    • 将执行的程序推到后台——std::async
    • 实现生产者/消费者模型——std::condition_variable
    • 实现多生产者/多消费者模型——std::condition_variable
    • 并行ASCII曼德尔布罗特渲染器——std::async
    • 实现一个小型自动化并行库——std::future
  • 第10章 文件系统
    • 实现标准化路径
    • 使用相对路径获取规范的文件路径
    • 列出目录下的所有文件
    • 实现一个类似grep的文本搜索工具
    • 实现一个自动文件重命名器
    • 实现一个磁盘使用统计器
    • 计算文件类型的统计信息
    • 实现一个工具:通过符号链接减少重复文件,从而控制文件夹大小
Powered by GitBook
On this page

Was this helpful?

  1. 第3章 迭代器

使用哨兵终止迭代

对于STL算法和基于范围的for循环来说,都会假设迭代的位置是提前知道的。在有些情况下,并不是这样,我们在迭代器到达末尾之前,我们是很难确定结束的位置在哪里。

这里使用C风格的字符串来举例,我们在编译时无法知道字符串的长度,只能在运行时使用某种方法进行判断。字符串遍历的代码如下所示:

for (const char *c_ponter = some_c_string; *c_pointer != '\0'; ++c_pointer) {
    const char c = *c_pointer;
    // do something with c
}

对于基于范围的for循环来说,我们可以将这段字符串包装进一个std::string实例中,std::string提供begin()和end()函数:

for (char c : std::string(some_c_string)) { /* do something with c */ }

不过,std::string在构造的时候也需要对整个字符串进行遍历。C++17中加入了std::string_view,但在构造的时候也会对字符串进行一次遍历。对于比较短的字符串来说这是没有必要的,不过对于其他类型来说就很有必要。std::istream_iterator可以用来从std::cin捕获输入,当用户持续输入的时候,其end迭代器并不能指向输入字符串真实的末尾。

C++17添加了一项新的特性,其不需要begin迭代器和end迭代器是同一类型的迭代器。本节我们看看,这种小修改的大用途。

How to do it...

本节,我们将在范围类中构造一个迭代器,其就不需要知道字符串的长度,也就不用提前找到字符串结束的位置。

  1. 包含必要的头文件。

    #include <iostream>
  2. 迭代器哨兵是本节的核心内容。奇怪的是,它的定义完全是空的。

    class cstring_iterator_sentinel {};
  3. 我们先来实现迭代器。其包含一个字符串指针,指针指向的容器就是我们要迭代的:

    class cstring_iterator {
        const char *s {nullptr};
  4. 构造函数只是初始化内部字符串指针,对应的字符串是外部输入。显式声明构造函数是为了避免字符串隐式转换为字符串迭代器:

    public:
        explicit cstring_iterator(const char *str)
            : s{str}
        {}
  5. 当对迭代器进行解引用,其就会返回对应位置上的字符:

        char operator*() const { return *s; }
  6. 累加迭代器只增加迭代器指向字符串的位置:

        cstring_iterator& operator++() {
            ++s;
            return *this;
        }
  7. 这一步是最有趣的。我们为了比较,实现了!=操作符。不过,这次我们不会去实现迭代器的比较操作,这次迭代器要和哨兵进行比较。当我们比较两个迭代器时,在当他们指向的位置相同时,我们可以认为对应范围已经完成遍历。通过和空哨兵对象比较,当迭代器指向的字符为\0字符时,我们可以认为到达了字符串的末尾。

        bool operator!=(const cstring_iterator_sentinel) const {
            return s != nullptr && *s != '\0';
        }
    };
  8. 为了使用基于范围的for循环,我们需要一个范围类,用来指定begin和end迭代器:

    class cstring_range {
        const char *s {nullptr};
  9. 实例化时用户只需要提供需要迭代的字符串:

    public:
        cstring_range(const char *str)
            : s{str}
        {}
  10. begin()函数将返回一个cstring_iterator迭代器,其指向了字符串的起始位置。end()函数会返回一个哨兵类型。需要注意的是,如果不使用哨兵类型,这里将返回一个迭代器,这个迭代器要指向字符串的末尾,但是我们无法预知字符串的末尾在哪里。

       cstring_iterator begin() const {
              return cstring_iterator{s};
       }
       cstring_iterator_sentinel end() const {
           return {};
       }
    };
  11. 类型定义完,我们就来使用它们。例子中字符串是用户输入,我们无法预知其长度。为了让使用者给我们一些输入,我们的例子会判断是否有输入参数。

    int main(int argc, char *argv[])
    {
        if (argc < 2) {
            std::cout << "Please provide one parameter.\n";
            return 1;
        }
  12. 当程序运行起来时,我们就知道argv[1]中包含的是使用者的字符串。

        for (char c : cstring_range(argv[1])) {
            std::cout << c;
        }
        std::cout << '\n';
    }
  13. 编译运行程序,就能得到如下的输出:

    $ ./main "abcdef"
    abcdef

循环会将所有的字符打印出来。这是一个很小的例子,只是为了展示如何使用哨兵确定迭代的范围。当在无法获得end迭代器的位置时,这是一种很有用的方法。当能够获得end迭代器时,就不需要使用哨兵了。

Previous使用反向迭代适配器进行迭代Next使用检查过的迭代器自动化检查迭代器代码

Last updated 6 years ago

Was this helpful?