C++17 STL Cook Book
  • Introduction
  • 前言
  • 关于本书
  • 各章梗概
  • 第1章 C++17的新特性
    • 使用结构化绑定来解包绑定的返回值
    • 将变量作用域限制在if和switch区域内
    • 新的括号初始化规则
    • 构造函数自动推导模板的类型
    • 使用constexpr-if简化编译
    • 只有头文件的库中启用内联变量
    • 使用折叠表达式实现辅助函数
  • 第2章 STL容器
    • 擦除/移除std::vector元素
    • 以O(1)的时间复杂度删除未排序std::vector中的元素
    • 快速或安全的访问std::vector实例的方法
    • 保持对std::vector实例的排序
    • 向std::map实例中高效并有条件的插入元素
    • 了解std::map::insert新的插入提示语义
    • 高效的修改std::map元素的键值
    • std::unordered_map中使用自定义类型
    • 过滤用户的重复输入,并以字母序将重复信息打印出——std::set
    • 实现简单的逆波兰表示法计算器——std::stack
    • 实现词频计数器——std::map
    • 实现写作风格助手用来查找文本中很长的句子——std::multimap
    • 实现个人待办事项列表——std::priority_queue
  • 第3章 迭代器
    • 建立可迭代区域
    • 让自己的迭代器与STL的迭代器兼容
    • 使用迭代适配器填充通用数据结构
    • 使用迭代器实现算法
    • 使用反向迭代适配器进行迭代
    • 使用哨兵终止迭代
    • 使用检查过的迭代器自动化检查迭代器代码
    • 构建zip迭代适配器
  • 第4章 Lambda表达式
    • 使用Lambda表达式定义函数
    • 使用Lambda为std::function添加多态性
    • 并置函数
    • 通过逻辑连接创建复杂谓词
    • 使用同一输入调用多个函数
    • 使用std::accumulate和Lambda函数实现transform_if
    • 编译时生成笛卡尔乘积
  • 第5章 STL基础算法
    • 容器间相互复制元素
    • 容器元素排序
    • 从容器中删除指定元素
    • 改变容器内容
    • 在有序和无序的vector中查找元素
    • 将vector中的值控制在特定数值范围内——std::clamp
    • 在字符串中定位模式并选择最佳实现——std::search
    • 对大vector进行采样
    • 生成输入序列的序列
    • 实现字典合并工具
  • 第6章 STL算法的高级使用方式
    • 使用STL算法实现单词查找树类
    • 使用树实现搜索输入建议生成器
    • 使用STL数值算法实现傅里叶变换
    • 计算两个vector的误差和
    • 使用ASCII字符曼德尔布罗特集合
    • 实现分割算法
    • 将标准算法进行组合
    • 删除词组间连续的空格
    • 压缩和解压缩字符串
  • 第7章 字符串, 流和正则表达
    • 创建、连接和转换字符串
    • 消除字符串开始和结束处的空格
    • 无需构造获取std::string
    • 从用户的输入读取数值
    • 计算文件中的单词数量
    • 格式化输出
    • 使用输入文件初始化复杂对象
    • 迭代器填充容器——std::istream
    • 迭代器进行打印——std::ostream
    • 使用特定代码段将输出重定向到文件
    • 通过集成std::char_traits创建自定义字符串类
    • 使用正则表达式库标记输入
    • 简单打印不同格式的数字
    • 从std::iostream错误中获取可读异常
  • 第8章 工具类
    • 转换不同的时间单位——std::ratio
    • 转换绝对时间和相对时间——std::chrono
    • 安全的标识失败——std::optional
    • 对元组使用函数
    • 使用元组快速构成数据结构
    • 将void*替换为更为安全的std::any
    • 存储不同的类型——std::variant
    • 自动化管理资源——std::unique_ptr
    • 处理共享堆内存——std::shared_ptr
    • 对共享对象使用弱指针
    • 使用智能指针简化处理遗留API
    • 共享同一对象的不同成员
    • 选择合适的引擎生成随机数
    • 让STL以指定分布方式产生随机数
  • 第9章 并行和并发
    • 标准算法的自动并行
    • 让程序在特定时间休眠
    • 启动和停止线程
    • 打造异常安全的共享锁——std::unique_lock和std::shared_lock
    • 避免死锁——std::scoped_lock
    • 同步并行中使用std::cout
    • 进行延迟初始化——std::call_once
    • 将执行的程序推到后台——std::async
    • 实现生产者/消费者模型——std::condition_variable
    • 实现多生产者/多消费者模型——std::condition_variable
    • 并行ASCII曼德尔布罗特渲染器——std::async
    • 实现一个小型自动化并行库——std::future
  • 第10章 文件系统
    • 实现标准化路径
    • 使用相对路径获取规范的文件路径
    • 列出目录下的所有文件
    • 实现一个类似grep的文本搜索工具
    • 实现一个自动文件重命名器
    • 实现一个磁盘使用统计器
    • 计算文件类型的统计信息
    • 实现一个工具:通过符号链接减少重复文件,从而控制文件夹大小
Powered by GitBook
On this page
  • How to do it...
  • How it works...
  • There's more...

Was this helpful?

  1. 第3章 迭代器

让自己的迭代器与STL的迭代器兼容

Previous建立可迭代区域Next使用迭代适配器填充通用数据结构

Last updated 6 years ago

Was this helpful?

上一节中,我们实现了自己的迭代器,不过为了融合STL提供的迭代器的优点,我们需要提供一些迭代器接口。后面我们会来学习如果实现这些接口,不过将我们自定义的迭代器与STL的标准迭代器放在一起时,有时会发现有编译不通过的问题。这是为什么呢?

STL算法尝试寻找更多有关于我们所使用迭代器的信息。不同迭代器的能力是不同的,不大可能用同样的算法实现不同的迭代器。例如,我们只是简单的从一个std::vector将其中的数字拷贝到另一个时,我们的实现中可以直接调用memcpy快速实现这个功能。如果容器是std::list的话,memcpy的方式就不好用了,只能一个个的单独拷贝。实现者将大量的自动优化思想注入STL算法实现当中。为了能更好的使用,我们也会为我们的迭代器装备这些思想。

How to do it...

本节中,我们将实现一个简单的计数迭代器(与STL算法一起使用),一开始这个实现是无法编译通过的。我们需要做一些兼容性操作,使得程序通过编译。

  1. 包含必要的头文件。

    #include <iostream>
    #include <algorithm>
  2. 实现一个计数迭代器,作为基础版本。当我们使用其进行遍历时,我们只需要增加计数器即可。num_range用来处理begin和end迭代器。

    class num_iterator
    {
        int i;
    public:
        explicit num_iterator(int position = 0) : i{position} {}
        int operator*() const { return i; }
        num_iterator& operator++() {
            ++i;
            return *this;
        }
        bool operator!=(const num_iterator &other) const {
            return i != other.i;
        }
        bool operator==(const num_iterator &other) const {
            return !(*this != other);
        }
    };
    
    class num_range {
        int a;
        int b;
    public:    
        num_range(int from, int to)
            : a{from}, b{to}
        {}
        num_iterator begin() const { return num_iterator{a}; }
        num_iterator end() const { return num_iterator{b}; }
    };
  3. 声明所使用的命名空间。

    using namespace std;
  4. 现在让我们来遍历100到109间的数字。这里需要注意的是,110这里是开区间,所以值无法遍历到110。

    int main()
    {
        num_range r {100, 110};
  5. 现在,我们使用一个STL算法std::minmax_element。这个算法会返回一个std::pair,其具有两个迭代器:一个指向最小值的迭代器和一个指向最大值的迭代器。在这个范围中100和109即为这两个迭代器所指向的位置。

        auto min_max(minmax_element(r.begin(), r.end()));
        cout << *min_max.first << " - " << *min_max.second << '\n';
    }
  6. 我们在编译的时候遇倒如下的错误信息。这个错误与std::iterator_traits有关。这个错误可能在使用其他编译器时,错误信息的格式不同,或者就没有错误。这个错误在clang 5.0.0 (trunk 299766)版本出现。

  7. 为了修正这个错误,我们需要激活迭代器的迭代功能。之后定义一个num_iterator结构体,我们会对std::iterator_traits进行特化。这个特化就是告诉STL我们的num_iterator是一种前向迭代器,并且指向的对象是int类型的值。

    namespace std {
    template <>
    struct iterator_traits<num_iterator> {
       using iterator_category = std::forward_iterator_tag;
       using value_type = int;
    };
    }
  8. 让我们再对程序进行编译,之前的错误应该不存在了。输出了范围内的最大值和最小值:

    100 - 109

How it works...

一些STL算法需要知道其处理容器的迭代器类型,有些还需要知道迭代器所指向的类型。这就是要有不同实现的原因。

不过,所有STL算法将会通过std::iterator_traits<my_iterator>访问对应类型的迭代器(这里假设迭代器类型为my_iterator)。这个特性类需要包含五种不同类型的成员定义:

  • difference_type: it1- it2结果的类型

  • value_type: 迭代器解引用的数据的类型(这里需要注意void类型)

  • pointer: 指向元素指针的类型

  • reference: 引用元素的类型

  • iterator_category: 迭代器属于哪种类型

pointer、reference和difference_type并没有在num_iterator中定义,因为其实际的内存值不重复(我们只是返回int值,不想数组一样是连续的)。因此num_iterator并不需要定义这些类型,因为算法是依赖于解引用后指定内存上的值。如果我们的迭代器定义了这些类型,就可能会出现问题。

There's more...

C++17标准之前,C++都鼓励自定义迭代器继承于std::iterator<...>,这样所有主流的类型都会自动定义。C++17中这条建议仍然能工作,但是不再推荐从std::iterator<...>继承了。