C++17 STL Cook Book
  • Introduction
  • 前言
  • 关于本书
  • 各章梗概
  • 第1章 C++17的新特性
    • 使用结构化绑定来解包绑定的返回值
    • 将变量作用域限制在if和switch区域内
    • 新的括号初始化规则
    • 构造函数自动推导模板的类型
    • 使用constexpr-if简化编译
    • 只有头文件的库中启用内联变量
    • 使用折叠表达式实现辅助函数
  • 第2章 STL容器
    • 擦除/移除std::vector元素
    • 以O(1)的时间复杂度删除未排序std::vector中的元素
    • 快速或安全的访问std::vector实例的方法
    • 保持对std::vector实例的排序
    • 向std::map实例中高效并有条件的插入元素
    • 了解std::map::insert新的插入提示语义
    • 高效的修改std::map元素的键值
    • std::unordered_map中使用自定义类型
    • 过滤用户的重复输入,并以字母序将重复信息打印出——std::set
    • 实现简单的逆波兰表示法计算器——std::stack
    • 实现词频计数器——std::map
    • 实现写作风格助手用来查找文本中很长的句子——std::multimap
    • 实现个人待办事项列表——std::priority_queue
  • 第3章 迭代器
    • 建立可迭代区域
    • 让自己的迭代器与STL的迭代器兼容
    • 使用迭代适配器填充通用数据结构
    • 使用迭代器实现算法
    • 使用反向迭代适配器进行迭代
    • 使用哨兵终止迭代
    • 使用检查过的迭代器自动化检查迭代器代码
    • 构建zip迭代适配器
  • 第4章 Lambda表达式
    • 使用Lambda表达式定义函数
    • 使用Lambda为std::function添加多态性
    • 并置函数
    • 通过逻辑连接创建复杂谓词
    • 使用同一输入调用多个函数
    • 使用std::accumulate和Lambda函数实现transform_if
    • 编译时生成笛卡尔乘积
  • 第5章 STL基础算法
    • 容器间相互复制元素
    • 容器元素排序
    • 从容器中删除指定元素
    • 改变容器内容
    • 在有序和无序的vector中查找元素
    • 将vector中的值控制在特定数值范围内——std::clamp
    • 在字符串中定位模式并选择最佳实现——std::search
    • 对大vector进行采样
    • 生成输入序列的序列
    • 实现字典合并工具
  • 第6章 STL算法的高级使用方式
    • 使用STL算法实现单词查找树类
    • 使用树实现搜索输入建议生成器
    • 使用STL数值算法实现傅里叶变换
    • 计算两个vector的误差和
    • 使用ASCII字符曼德尔布罗特集合
    • 实现分割算法
    • 将标准算法进行组合
    • 删除词组间连续的空格
    • 压缩和解压缩字符串
  • 第7章 字符串, 流和正则表达
    • 创建、连接和转换字符串
    • 消除字符串开始和结束处的空格
    • 无需构造获取std::string
    • 从用户的输入读取数值
    • 计算文件中的单词数量
    • 格式化输出
    • 使用输入文件初始化复杂对象
    • 迭代器填充容器——std::istream
    • 迭代器进行打印——std::ostream
    • 使用特定代码段将输出重定向到文件
    • 通过集成std::char_traits创建自定义字符串类
    • 使用正则表达式库标记输入
    • 简单打印不同格式的数字
    • 从std::iostream错误中获取可读异常
  • 第8章 工具类
    • 转换不同的时间单位——std::ratio
    • 转换绝对时间和相对时间——std::chrono
    • 安全的标识失败——std::optional
    • 对元组使用函数
    • 使用元组快速构成数据结构
    • 将void*替换为更为安全的std::any
    • 存储不同的类型——std::variant
    • 自动化管理资源——std::unique_ptr
    • 处理共享堆内存——std::shared_ptr
    • 对共享对象使用弱指针
    • 使用智能指针简化处理遗留API
    • 共享同一对象的不同成员
    • 选择合适的引擎生成随机数
    • 让STL以指定分布方式产生随机数
  • 第9章 并行和并发
    • 标准算法的自动并行
    • 让程序在特定时间休眠
    • 启动和停止线程
    • 打造异常安全的共享锁——std::unique_lock和std::shared_lock
    • 避免死锁——std::scoped_lock
    • 同步并行中使用std::cout
    • 进行延迟初始化——std::call_once
    • 将执行的程序推到后台——std::async
    • 实现生产者/消费者模型——std::condition_variable
    • 实现多生产者/多消费者模型——std::condition_variable
    • 并行ASCII曼德尔布罗特渲染器——std::async
    • 实现一个小型自动化并行库——std::future
  • 第10章 文件系统
    • 实现标准化路径
    • 使用相对路径获取规范的文件路径
    • 列出目录下的所有文件
    • 实现一个类似grep的文本搜索工具
    • 实现一个自动文件重命名器
    • 实现一个磁盘使用统计器
    • 计算文件类型的统计信息
    • 实现一个工具:通过符号链接减少重复文件,从而控制文件夹大小
Powered by GitBook
On this page
  • How to do it...
  • How it works...

Was this helpful?

  1. 第5章 STL基础算法

对大vector进行采样

Previous在字符串中定位模式并选择最佳实现——std::searchNext生成输入序列的序列

Last updated 6 years ago

Was this helpful?

有时我们需要处理非常庞大的数据量,不可能在短时间内处理完这些数据。这样的话,数据可能就需要采样来减少要处理的数据量,从而加速整个处理过程。另一些情况下,不减少数据量也能加快程序处理的速度,不过这需要对一些数据进行存储或变换。

采样最原始的方式是每隔N个数据点,采样一次。在大多数情况下这样做没有问题,但是在信号处理中,其会引发一种称为混淆的数学情况。当减少两个随机采样点的距离时,这种现象会减弱。我们看一下下面的图,这张图就很能说明问题——当原始信号为一个sin波时,图例为三角的曲线就表示对这个曲线进行每隔100个点的取样。

不幸的是,其采样得到的值都是同一个Y值!连接起来就是与X轴平行的一条线。平方点采样,其每隔100+random(-15, +15)个值进行采样。不过,这样连接起来的曲线看起来和原始的曲线还是相差很远,所以在这个例子中就不能以固定的步长进行采样。

std::sample函数不会添加随机值来改变采样的步长,而是采用完全随机的点进行采样。所以其工作方式与上图所显示的大为不同。

How to do it...

我们将对一个具有随机值的大vector进行采样。随机数据符合正态分布。采样结果也要符合正态分布,来让我们看下代码:

  1. 首先包含必要的头文件,以及声明所使用的命名空间。

    #include <iostream>
    #include <vector>
    #include <random>
    #include <algorithm>
    #include <iterator>
    #include <map>
    #include <iomanip>
    
    using namespace std;
  2. 使用常数直接对变量进行初始化。第一个值代表了vector的的长度,第二个数代表了采样的步长:

    int main()
    {
        const size_t data_points {100000};
        const size_t sample_points {100};
  3. 我们要使用符合正态分布的随机值生成器来将vector填满。这里先来确定正太分布的平均值和标准差:

        const int mean {10};
        const size_t dev {3};
  4. 现在,我们来设置随机数生成器。首先,我们实例化一个随机设备,然后给定一个随机种子,对生成器进行初始化。然后,就可以得到对应分布的随机生成器:

        random_device rd;
        mt19937 gen {rd()};
        normal_distribution<> d {mean, dev};
  5. 对vector进行初始化,并用随机值将vector进行填充。这里会使用到std::generate_n算法,其会将随机值,通过back_inserter迭代器插入vector中。生成函数对象包装成了d(gen)表达式,其能生成符合分布的随机值:

        vector<int> v;
        v.reserve(data_points);
    
        generate_n(back_inserter(v), data_points,
            [&] { return d(gen); });
  6. 我们再实例化另一个vector,其来放采样过后的数值:

        vector<int> samples;
        v.reserve(sample_points);
  7. std::sample算法与std::copy的原理类似,不过其需要两个额外的参数:采样数量和随机值生成对象。前者确定输入范围,后者去确定采样点:

        sample(begin(v), end(v), back_inserter(samples),
            sample_points, mt19937{random_device{}()});
  8. 这样就完成了采样。代码的最后展示一下我们的采样结果。输入数据符合正态分布,如果采样算法可行,那么其采样的结果也要符合正态分布。为了展示采样后的值是否符合正态分布,我们将数值的直方图进行打印:

        map<int, size_t> hist;
    
        for (int i : samples) { ++hist[i]; }
  9. 最后,我们使用循环打印出直方图:

        for (const auto &[value, count] : hist) {
            cout << setw(2) << value << " "
                << string(count, '*') << '\n';
        }
    }

How it works...

std::sample算法是C++17添加的。其函数签名如下:

template<class InIterator, class OutIterator,
class Distance, class UniformRandomBitGenerator>
OutIterator sample(InIterator first, InIterator last,
                 SampleIterator out, Distance n,
                 UniformRandomBitGenerator&& g);

其输入范围有first和last迭代器确定,out迭代器作为采样输出。这些迭代器对于该函数来说和std::copy类似,元素从一个容器拷贝到另一个。std::sample算法只会拷贝输入中的一部分,因为采样结果只有n个元素。其在内部使用均匀分布,所以能以相同的概率选择输入范围中的每个数据点。

编译并运行程序,我们将看到采样后的结果,其也符合正态分布: