C++17 STL Cook Book
  • Introduction
  • 前言
  • 关于本书
  • 各章梗概
  • 第1章 C++17的新特性
    • 使用结构化绑定来解包绑定的返回值
    • 将变量作用域限制在if和switch区域内
    • 新的括号初始化规则
    • 构造函数自动推导模板的类型
    • 使用constexpr-if简化编译
    • 只有头文件的库中启用内联变量
    • 使用折叠表达式实现辅助函数
  • 第2章 STL容器
    • 擦除/移除std::vector元素
    • 以O(1)的时间复杂度删除未排序std::vector中的元素
    • 快速或安全的访问std::vector实例的方法
    • 保持对std::vector实例的排序
    • 向std::map实例中高效并有条件的插入元素
    • 了解std::map::insert新的插入提示语义
    • 高效的修改std::map元素的键值
    • std::unordered_map中使用自定义类型
    • 过滤用户的重复输入,并以字母序将重复信息打印出——std::set
    • 实现简单的逆波兰表示法计算器——std::stack
    • 实现词频计数器——std::map
    • 实现写作风格助手用来查找文本中很长的句子——std::multimap
    • 实现个人待办事项列表——std::priority_queue
  • 第3章 迭代器
    • 建立可迭代区域
    • 让自己的迭代器与STL的迭代器兼容
    • 使用迭代适配器填充通用数据结构
    • 使用迭代器实现算法
    • 使用反向迭代适配器进行迭代
    • 使用哨兵终止迭代
    • 使用检查过的迭代器自动化检查迭代器代码
    • 构建zip迭代适配器
  • 第4章 Lambda表达式
    • 使用Lambda表达式定义函数
    • 使用Lambda为std::function添加多态性
    • 并置函数
    • 通过逻辑连接创建复杂谓词
    • 使用同一输入调用多个函数
    • 使用std::accumulate和Lambda函数实现transform_if
    • 编译时生成笛卡尔乘积
  • 第5章 STL基础算法
    • 容器间相互复制元素
    • 容器元素排序
    • 从容器中删除指定元素
    • 改变容器内容
    • 在有序和无序的vector中查找元素
    • 将vector中的值控制在特定数值范围内——std::clamp
    • 在字符串中定位模式并选择最佳实现——std::search
    • 对大vector进行采样
    • 生成输入序列的序列
    • 实现字典合并工具
  • 第6章 STL算法的高级使用方式
    • 使用STL算法实现单词查找树类
    • 使用树实现搜索输入建议生成器
    • 使用STL数值算法实现傅里叶变换
    • 计算两个vector的误差和
    • 使用ASCII字符曼德尔布罗特集合
    • 实现分割算法
    • 将标准算法进行组合
    • 删除词组间连续的空格
    • 压缩和解压缩字符串
  • 第7章 字符串, 流和正则表达
    • 创建、连接和转换字符串
    • 消除字符串开始和结束处的空格
    • 无需构造获取std::string
    • 从用户的输入读取数值
    • 计算文件中的单词数量
    • 格式化输出
    • 使用输入文件初始化复杂对象
    • 迭代器填充容器——std::istream
    • 迭代器进行打印——std::ostream
    • 使用特定代码段将输出重定向到文件
    • 通过集成std::char_traits创建自定义字符串类
    • 使用正则表达式库标记输入
    • 简单打印不同格式的数字
    • 从std::iostream错误中获取可读异常
  • 第8章 工具类
    • 转换不同的时间单位——std::ratio
    • 转换绝对时间和相对时间——std::chrono
    • 安全的标识失败——std::optional
    • 对元组使用函数
    • 使用元组快速构成数据结构
    • 将void*替换为更为安全的std::any
    • 存储不同的类型——std::variant
    • 自动化管理资源——std::unique_ptr
    • 处理共享堆内存——std::shared_ptr
    • 对共享对象使用弱指针
    • 使用智能指针简化处理遗留API
    • 共享同一对象的不同成员
    • 选择合适的引擎生成随机数
    • 让STL以指定分布方式产生随机数
  • 第9章 并行和并发
    • 标准算法的自动并行
    • 让程序在特定时间休眠
    • 启动和停止线程
    • 打造异常安全的共享锁——std::unique_lock和std::shared_lock
    • 避免死锁——std::scoped_lock
    • 同步并行中使用std::cout
    • 进行延迟初始化——std::call_once
    • 将执行的程序推到后台——std::async
    • 实现生产者/消费者模型——std::condition_variable
    • 实现多生产者/多消费者模型——std::condition_variable
    • 并行ASCII曼德尔布罗特渲染器——std::async
    • 实现一个小型自动化并行库——std::future
  • 第10章 文件系统
    • 实现标准化路径
    • 使用相对路径获取规范的文件路径
    • 列出目录下的所有文件
    • 实现一个类似grep的文本搜索工具
    • 实现一个自动文件重命名器
    • 实现一个磁盘使用统计器
    • 计算文件类型的统计信息
    • 实现一个工具:通过符号链接减少重复文件,从而控制文件夹大小
Powered by GitBook
On this page
  • How to do it...
  • How it works...

Was this helpful?

  1. 第7章 字符串, 流和正则表达

从std::iostream错误中获取可读异常

本书之前的章节中,我们还没对异常进行过捕获。不过对于流对象不会抛出异常,所以很容易使用。当我们想要解析10个数,不过解析过程在中途失败了,那么流对象将会将自身设置为失败状态,并且不会继续对数字进行解析。这样,我们就不会让程序处于危险当中。我们可以将解析过程转换为一个条件变量,比如if (cin >> foo >> bar >> ...)。如果这个判断失败了,那我们将对输入进行处理。所以,这里并不会出现try-catch代码块。

实际上,之前的C++输入输出流是会抛出异常的。异常这个特性是不是一开始就有的,所以这也可能是流对象库并不是第一个支持异常特性的原因。

为了对流使用异常,我们必须对每个流对象单独进行配置,让其在失败的时候抛出一个异常。不幸的是,我们可以对对象的异常进行捕获,但是这步并没有标准化。这就导致我们无法获得有效的错误信息,我们将在后续的实例中看到。如果我们很想对流对象使用异常,那么可以使用C库中有关文件系统错误状态,来获取更多的信息。

本节中,我们将会通过不同的方式,让程序运行失败,然后来处理这些异常,并且了解如何获取更多的有效信息。

How to do it...

我们将会让程序打开一个文件(这个过程可能会失败),并且将会从文件中读取一个整型数字(也可能会失败)。我们可以通过激活异常的方式来发现错误,然后再来看如何对这些错误进行处理:

  1. 包含必要的头文件,并声明所使用的命名空间:

    #include <iostream>
    #include <fstream>
    #include <system_error>
    #include <cstring>
    
    using namespace std;
  2. 当我们要将流对象和异常一起使用时,首先需要启动异常。为了获取一个文件流对象,在指定文件并不存在时,抛出一个异常;或是在解析错误时,我们需要将对应的失败原因设置到异常掩码的对应位上。当执行失败的时候,将触发一个异常。并通过激活的failbit和badbit,我们能让文件系统的错误抛出异常,并对这个错误进行解析:

    int main()
    {
        ifstream f;
        f.exceptions(f.failbit | f.badbit);
  3. 现在可以使用try块进行对文件的访问。文件打开成功,那我们将继续读取文件中的整型数字。并且,只有在读取数字成功的情况下,我们才会对数字进行打印:

        try {
            f.open("non_existant.txt");
    
            int i;
            f >> i;
    
            cout << "integer has value: " << i << '\n';
        }
  4. 对于可能发生的两种错误,一个std::ios_base::failure实例将会抛出。这个对象有一个what()成员函数,其会为我们解释触发了哪种异常。不幸的是,并不存在标准化的信息,所以我们不会得到太多有用的信息。不过,我们至少可以区分,触发异常的是一个文件系统问题,还是一个格式解析问题。全局变量errno,其在C++诞生前就存在,其会设置为一个错误值,可供我们进行查看。strerror函数会将一个错误值,翻译为我们可以读懂的字符串。当errno是0时,就代表文件系统没有任何错误:

        catch (ios_base::failure& e) {
            cerr << "Caught error: ";
            if (errno) {
                cerr << strerror(errno) << '\n';
            } else {
                cerr << e.what() << '\n';
            }
        }
    }
  5. 编译并运行程序,两种错误可能都会在运行时发生。当文件不存在时,我们就不可能从文件中获取数值,所以我们会得到一个iostream_category错误信息:

    $ ./readable_error_msg
    Caught error: ios_base::clear: unspecified iostream_category
  6. 如果文件不存在, strerror(errno)将会返回不同的错误信息:

    $ ./readable_error_msg
    Caught error: No such file or directory

How it works...

我们可以通过s.exceptions(s.failbit | s.badbit)使能流对象s抛出异常的能力。不过,这也就意味着有些情况无法使用异常,例如std::ifstream的实例需要打开一个文件进行构造,所以我们不能在之后对异常进行设置。

ifstream f {"non_existant.txt"};
f.exceptions(...); // too late for an exception

这就十分遗憾了,因为异常处理与原始C风格的方式进行对比,无需被if困扰,其每一步都是在处理异常。

当我们使用各种方法让流处于失败的状态,就会发现抛出的这些异常并没有什么区别。这样只需要了解何时捕获错误,而非捕获了什么错误(对于流是这样,而对于STL中的其他类型就不是了),这也就是为什么我们要对errno的值进行检查的原因。这个全局变量在C++和异常诞生之前,就已经存在了。

如果有任何与系统相关的函数发生了错误,其会将errno设置为除0之外的其他值(0代表没有错误),然后调用者可以通过对errno值的查询,来了解到底出现了什么问题。这个问题我们在多线程程序会经常遇到,并且所有线程都会对一个全局变量进行修改,那么当出现错误了,是哪个线程造成的呢?幸运的是,这个设计已经在C++11中进行了修改,每个线程都只能看到属于自己的erron变量。

对于原始的错误处理方式,我们就不进行详细的描述了,不过其能为我们提供额外有用的信息,比如流对象触发了基于系统的异常。异常会告诉我们发生了什么,而erron则会告诉我们会发生哪种级别的错误。

Previous简单打印不同格式的数字Next第8章 工具类

Last updated 6 years ago

Was this helpful?