C++17 STL Cook Book
  • Introduction
  • 前言
  • 关于本书
  • 各章梗概
  • 第1章 C++17的新特性
    • 使用结构化绑定来解包绑定的返回值
    • 将变量作用域限制在if和switch区域内
    • 新的括号初始化规则
    • 构造函数自动推导模板的类型
    • 使用constexpr-if简化编译
    • 只有头文件的库中启用内联变量
    • 使用折叠表达式实现辅助函数
  • 第2章 STL容器
    • 擦除/移除std::vector元素
    • 以O(1)的时间复杂度删除未排序std::vector中的元素
    • 快速或安全的访问std::vector实例的方法
    • 保持对std::vector实例的排序
    • 向std::map实例中高效并有条件的插入元素
    • 了解std::map::insert新的插入提示语义
    • 高效的修改std::map元素的键值
    • std::unordered_map中使用自定义类型
    • 过滤用户的重复输入,并以字母序将重复信息打印出——std::set
    • 实现简单的逆波兰表示法计算器——std::stack
    • 实现词频计数器——std::map
    • 实现写作风格助手用来查找文本中很长的句子——std::multimap
    • 实现个人待办事项列表——std::priority_queue
  • 第3章 迭代器
    • 建立可迭代区域
    • 让自己的迭代器与STL的迭代器兼容
    • 使用迭代适配器填充通用数据结构
    • 使用迭代器实现算法
    • 使用反向迭代适配器进行迭代
    • 使用哨兵终止迭代
    • 使用检查过的迭代器自动化检查迭代器代码
    • 构建zip迭代适配器
  • 第4章 Lambda表达式
    • 使用Lambda表达式定义函数
    • 使用Lambda为std::function添加多态性
    • 并置函数
    • 通过逻辑连接创建复杂谓词
    • 使用同一输入调用多个函数
    • 使用std::accumulate和Lambda函数实现transform_if
    • 编译时生成笛卡尔乘积
  • 第5章 STL基础算法
    • 容器间相互复制元素
    • 容器元素排序
    • 从容器中删除指定元素
    • 改变容器内容
    • 在有序和无序的vector中查找元素
    • 将vector中的值控制在特定数值范围内——std::clamp
    • 在字符串中定位模式并选择最佳实现——std::search
    • 对大vector进行采样
    • 生成输入序列的序列
    • 实现字典合并工具
  • 第6章 STL算法的高级使用方式
    • 使用STL算法实现单词查找树类
    • 使用树实现搜索输入建议生成器
    • 使用STL数值算法实现傅里叶变换
    • 计算两个vector的误差和
    • 使用ASCII字符曼德尔布罗特集合
    • 实现分割算法
    • 将标准算法进行组合
    • 删除词组间连续的空格
    • 压缩和解压缩字符串
  • 第7章 字符串, 流和正则表达
    • 创建、连接和转换字符串
    • 消除字符串开始和结束处的空格
    • 无需构造获取std::string
    • 从用户的输入读取数值
    • 计算文件中的单词数量
    • 格式化输出
    • 使用输入文件初始化复杂对象
    • 迭代器填充容器——std::istream
    • 迭代器进行打印——std::ostream
    • 使用特定代码段将输出重定向到文件
    • 通过集成std::char_traits创建自定义字符串类
    • 使用正则表达式库标记输入
    • 简单打印不同格式的数字
    • 从std::iostream错误中获取可读异常
  • 第8章 工具类
    • 转换不同的时间单位——std::ratio
    • 转换绝对时间和相对时间——std::chrono
    • 安全的标识失败——std::optional
    • 对元组使用函数
    • 使用元组快速构成数据结构
    • 将void*替换为更为安全的std::any
    • 存储不同的类型——std::variant
    • 自动化管理资源——std::unique_ptr
    • 处理共享堆内存——std::shared_ptr
    • 对共享对象使用弱指针
    • 使用智能指针简化处理遗留API
    • 共享同一对象的不同成员
    • 选择合适的引擎生成随机数
    • 让STL以指定分布方式产生随机数
  • 第9章 并行和并发
    • 标准算法的自动并行
    • 让程序在特定时间休眠
    • 启动和停止线程
    • 打造异常安全的共享锁——std::unique_lock和std::shared_lock
    • 避免死锁——std::scoped_lock
    • 同步并行中使用std::cout
    • 进行延迟初始化——std::call_once
    • 将执行的程序推到后台——std::async
    • 实现生产者/消费者模型——std::condition_variable
    • 实现多生产者/多消费者模型——std::condition_variable
    • 并行ASCII曼德尔布罗特渲染器——std::async
    • 实现一个小型自动化并行库——std::future
  • 第10章 文件系统
    • 实现标准化路径
    • 使用相对路径获取规范的文件路径
    • 列出目录下的所有文件
    • 实现一个类似grep的文本搜索工具
    • 实现一个自动文件重命名器
    • 实现一个磁盘使用统计器
    • 计算文件类型的统计信息
    • 实现一个工具:通过符号链接减少重复文件,从而控制文件夹大小
Powered by GitBook
On this page
  • How to do it...
  • How it works...
  • There's more...

Was this helpful?

  1. 第2章 STL容器

快速或安全的访问std::vector实例的方法

std::vector可能是STL容器中适用范围最广的,因为其存储数据的方式和数组一样,并且还有相对完善的配套设施。不过,非法访问一个vector实例还是十分危险的。如果一个vector实例具有100个元素,那当我们想要访问索引为123的元素时,程序就会崩溃掉。如果不崩溃,那么你就麻烦了,未定义的行为会导致一系列奇奇怪怪的错误,查都不好查。经验丰富的开发者会在访问前,对索引进行检查。这样的检查其实比较多余,因为很多人不知道std::vector有内置的检查机制。

How to do it...

本节我们将使用两种不同的方式访问一个std::vector实例,并且利用其特性编写更加安全的代码。

  1. 先包含相应的头文件,并且用1000个123填满一个vector实例:

    #include <iostream>
    #include <vector>
    using namespace std;
    int main()
    {
        const size_t container_size{1000};
        vector<int> v(container_size, 123);
  2. 我们通过[]操作符访问范围之外的元素:

        cout << "Out of range element value: "
             << v[container_size + 10] << '\n';
  3. 之后我们使用at函数访问范围之外的元素:

        cout << "Out of range element value: "
             << v.at(container_size + 10) << '\n';
    }
  4. 让我们运行程序,看下会发生什么。下面的错误信息是由GCC给出。其他编译器也会通过不同方式给出类似的错误提示。第一种方式得到的结果比较奇怪。超出范围的访问方式并没有让程序崩溃,但是访问到了与123相差很大的数字。第二种方式中,我们看不到打印出来的结果,因为在打印之前程序已经崩溃了。当越界访问发生的时候,我们可以通过异常的方式更早的得知!

    Out of range element value: -726629391
    terminate called after throwing an instance of 'std::out_of_range'
    what(): array::at: __n (which is 1010) >= _Nm (which is 1000)
    Aborted (core dumped)

How it works...

std::vector提供了[]操作符和at函数,它们的作用几乎是一样的。at函数会检查给定的索引值是否越界,如果越界则返回一个异常。这对于很多情景都十分适用,不过因为检查越界要花费一些时间,所以at函数会让程序慢一些。

当需要非常快的索引成员时,并能保证索引不越界,我们会使用[]快速访问vector实例。很多情况下,at函数在牺牲一点性能的基础上,有助于发现程序内在的bug。

Note:

默认使用at函数时一个好习惯。当代码的性能很差,但有没有bug存在时,可以使用性能更高的操作符来替代at函数。

There's more...

当然,我们需要处理越界访问,避免整个程序崩溃。为了对越界访问进行处理,我们可以使用截获异常的方式。可以用try代码块将调用at函数的部分包围,并且定义错误处理的catch代码段。

try {
    std::cout << "Out of range element value: "
              << v.at(container_size + 10) << '\n';
} catch (const std::out_of_range &e) {
    std::cout << "Ooops, out of range access detected: "
              << e.what() << '\n';
}

Note:

顺带一提,std::array也提供了at函数。

Previous以O(1)的时间复杂度删除未排序std::vector中的元素Next保持对std::vector实例的排序

Last updated 6 years ago

Was this helpful?